Pregunta
upstudy study bank question image url

ME The expression \( \pi(r-3)^{2} \) represents the area covered by the hour hand a clock in one rotation, where \( r \) is the radius of the entire clock. Write a olynomial that represents the area covered by the hour hand in one rotation.

Ask by Harris Welch. in the United States
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The area covered by the hour hand in one rotation is represented by the polynomial: \[ \text{Area}(r) = \pi r^2 - 6\pi r + 9\pi \]

Solución

To express the area covered by the hour hand of a clock in one rotation as a polynomial, let's start with the given expression: \[ \text{Area} = \pi (r - 3)^2 \] Here, \( r \) is the radius of the entire clock, and \( \pi (r - 3)^2 \) represents the area of a circle with radius \( r - 3 \). To convert this into a polynomial, we'll expand the binomial \((r - 3)^2\): \[ (r - 3)^2 = r^2 - 6r + 9 \] Now, multiply each term by \( \pi \) to get the area: \[ \text{Area} = \pi (r^2 - 6r + 9) \] Distributing \( \pi \) across the terms gives: \[ \text{Area} = \pi r^2 - 6\pi r + 9\pi \] **Polynomial Representation:** \[ \text{Area}(r) = \pi r^2 - 6\pi r + 9\pi \] This polynomial accurately represents the area covered by the hour hand of the clock in one full rotation. **Final Answer:** After expanding, the polynomial is π r² minus six π r plus nine π. Thus, Area(r) = π r² − 6πr + 9π

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

The expression \( \pi(r-3)^{2} \) can be expanded into a polynomial by using the formula for the square of a binomial. This gives us: \[ \pi(r-3)^{2} = \pi(r^{2} - 6r + 9) = \pi r^{2} - 6\pi r + 9\pi \] So, the polynomial that represents the area covered by the hour hand in one rotation is \( \pi r^{2} - 6\pi r + 9\pi \). In this scenario, the areas represented by different geometrical figures come into play. Just like clocks have smaller hands (minute and second), understanding area calculations helps in various fields. From designing efficient clock faces to optimizing machinery that rotates, knowing how to calculate areas leads to more functional and appealing designs.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad