Pregunta
upstudy study bank question image url

Use exponents to simplify each expression. \( \begin{array}{ll}x \times x x x x= & (3 y)(3 y)= \\ 3 a a a a= & (m n)(m n)(m n)= \\ -6 x x y y y= & 6(a b)(a b)= \\ 2 \times x x x= & (2 x)(2 x)(2 x)(2 x)=\end{array} \)

Ask by Burgess Hills. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

Here are the simplified expressions using exponents: 1. \( x \times x \times x \times x \times x = x^5 \) 2. \( (3y)(3y) = 9y^2 \) 3. \( 3a \times a \times a \times a = 3a^4 \) 4. \( (mn)(mn)(mn) = m^3n^3 \) 5. \( -6x \times x \times y \times y \times y = -6x^2y^3 \) 6. \( 6(ab)(ab) = 6a^2b^2 \) 7. \( 2 \times x \times x \times x = 2x^3 \) 8. \( (2x)(2x)(2x)(2x) = 16x^4 \)

Solución

Sure! Let's simplify each expression using exponents. 1. **\( x \times x \times x \times x \times x \)** \[ x^5 \] 2. **\( (3y)(3y) \)** \[ (3y)^2 = 3^2 \times y^2 = 9y^2 \] 3. **\( 3a \times a \times a \times a \)** \[ 3a^4 \] 4. **\( (mn)(mn)(mn) \)** \[ (mn)^3 = m^3n^3 \] 5. **\( -6x \times x \times y \times y \times y \)** \[ -6x^2y^3 \] 6. **\( 6(ab)(ab) \)** \[ 6(ab)^2 = 6a^2b^2 \] 7. **\( 2 \times x \times x \times x \)** \[ 2x^3 \] 8. **\( (2x)(2x)(2x)(2x) \)** \[ (2x)^4 = 2^4 \times x^4 = 16x^4 \] ### Summary of Simplified Expressions: | Original Expression | Simplified with Exponents | |-----------------------------------|---------------------------| | \( x \times x \times x \times x \times x \) | \( x^5 \) | | \( (3y)(3y) \) | \( 9y^2 \) | | \( 3a \times a \times a \times a \) | \( 3a^4 \) | | \( (mn)(mn)(mn) \) | \( m^3n^3 \) | | \( -6x \times x \times y \times y \times y \) | \( -6x^2y^3 \) | | \( 6(ab)(ab) \) | \( 6a^2b^2 \) | | \( 2 \times x \times x \times x \) | \( 2x^3 \) | | \( (2x)(2x)(2x)(2x) \) | \( 16x^4 \) | Feel free to ask if you need further explanations on any of these simplifications!

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

Let's have some fun with exponents and simplify these expressions! For the first expression, \( x \times x x x x \) simplifies to \( x^5 \) since you're multiplying \( x \) by itself five times. Now, moving on to \( (3 y)(3 y) \), this expression becomes \( 9y^2 \), as \( 3 \times 3 = 9 \) and you have \( y \) multiplied by itself, which gives you \( y^2 \). Next, \( 3 a a a a \) can be written as \( 3a^4 \). You have \( a \) being multiplied four times, so it’s simply \( a^4 \) multiplied by 3. For \( (m n)(m n)(m n) \), we can rewrite it as \( m^3n^3 \) since you have three \( m \)'s and three \( n \)'s being multiplied together. Moving on to the expression \( -6 x x y y y \), this simplifies to \( -6x^2y^3 \); you’re multiplying \( x \) by itself twice and \( y \) by itself three times. Then we have \( 6(a b)(a b) \), which simplifies to \( 6a^2b^2 \), because there are two \( a \)'s and two \( b \)'s being multiplied. Now for \( 2 \times x x x \), this becomes \( 2x^3 \) since you have one \( 2 \) multiplied by three \( x \)'s. Lastly, \( (2 x)(2 x)(2 x)(2 x) \) simplifies to \( 16x^4 \) because \( 2^4 = 16 \) and there are four \( x\)'s, making \( x^4 \). So, to sum it all up: 1. \( x \times x x x x = x^5 \) 2. \( (3 y)(3 y) = 9y^2 \) 3. \( 3 a a a a = 3a^4 \) 4. \( (m n)(m n)(m n) = m^3n^3 \) 5. \( -6 x x y y y = -6x^2y^3 \) 6. \( 6(a b)(a b) = 6a^2b^2 \) 7. \( 2 \times x x x = 2x^3 \) 8. \( (2 x)(2 x)(2 x)(2 x) = 16x^4 \)

preguntas relacionadas

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad