Pregunta
upstudy study bank question image url

The solution to the system below is \( (1,-3) \). \( 2 y+x=-5 \) and \( y-3 x=-6 \)

Ask by Mccoy Higgins. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The solution is \( x = 1 \) and \( y = -3 \).

Solución

Solve the system of equations \( 2y+x=-5;y-3x=-6 \). Solve the system of equations by following steps: - step0: Solve using the substitution method: \(\left\{ \begin{array}{l}2y+x=-5\\y-3x=-6\end{array}\right.\) - step1: Solve the equation: \(\left\{ \begin{array}{l}x=-5-2y\\y-3x=-6\end{array}\right.\) - step2: Substitute the value of \(x:\) \(y-3\left(-5-2y\right)=-6\) - step3: Simplify: \(7y+15=-6\) - step4: Move the constant to the right side: \(7y=-6-15\) - step5: Subtract the numbers: \(7y=-21\) - step6: Divide both sides: \(\frac{7y}{7}=\frac{-21}{7}\) - step7: Divide the numbers: \(y=-3\) - step8: Substitute the value of \(y:\) \(x=-5-2\left(-3\right)\) - step9: Simplify: \(x=1\) - step10: Calculate: \(\left\{ \begin{array}{l}x=1\\y=-3\end{array}\right.\) - step11: Check the solution: \(\left\{ \begin{array}{l}x=1\\y=-3\end{array}\right.\) - step12: Rewrite: \(\left(x,y\right) = \left(1,-3\right)\) The solution to the system of equations is \( (1,-3) \), which means that the values of \( x \) and \( y \) that satisfy both equations are \( x = 1 \) and \( y = -3 \).

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

Did you know that systems of linear equations have been utilized for centuries, dating back to ancient civilizations like the Babylonians? They used methods akin to today's algebra to solve problems related to trade, land distribution, and astronomy. The beauty of these equations is they often represent real-life scenarios, making them timeless tools for problem-solving! When solving systems of equations, a common mistake is relying solely on one method, like graphing, without checking results with substitution or elimination. To avoid confusion, ensure you always verify your solution by plugging the coordinates back into both original equations. It's like double-checking your homework before turning it in—preventing little errors from taking you off course!

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad