Pregunta
upstudy study bank question image url

g) Use the truth table to show that the proportion is a tautology \( [p \Lambda(p \rightarrow q] \rightarrow q \). (4mks) h) Prove that \( \forall \mu \in \mathbb{N} n^{3}-n \) is divisible by 3 . i) Given that \( f(x)=3 x^{2}+4 \) find i. \( f(2) \) ii. \( f^{-1}(7) \)

Ask by Mann Pearson. in Kenya
Dec 17,2024

Solución de tutoría real

Respuesta verificada por el tutor

Responder

a) The proportion \( [p \wedge (p \rightarrow q)] \rightarrow q \) is a tautology. b) \( \forall \mu \in \mathbb{N} n^{3}-n \) is divisible by 3. c) i. \( f(2) = 16 \); ii. \( f^{-1}(7) = \pm 1 \).

Solución

a) To show that the proportion \( [p \wedge (p \rightarrow q)] \rightarrow q \) is a tautology using a truth table, we need to construct a truth table for the proposition and show that the proposition is always true regardless of the truth values of \( p \) and \( q \). Let's construct the truth table for the proposition \( [p \wedge (p \rightarrow q)] \rightarrow q \): | \( p \) | \( q \) | \( p \wedge (p \rightarrow q) \) | \( [p \wedge (p \rightarrow q)] \rightarrow q \) | |--------|--------|----------------------------------|---------------------------------------------| | T | T | T | T | | T | F | F | T | | F | T | F | T | | F | F | T | T | From the truth table, we can see that the proposition \( [p \wedge (p \rightarrow q)] \rightarrow q \) is always true, regardless of the truth values of \( p \) and \( q \). Therefore, the proportion is a tautology. b) To prove that \( \forall \mu \in \mathbb{N} n^{3}-n \) is divisible by 3, we need to show that for any natural number \( n \), \( n^{3}-n \) is divisible by 3. Let's prove this by mathematical induction: Base case: For \( n = 1 \), \( 1^{3}-1 = 0 \), which is divisible by 3. Inductive step: Assume that for some natural number \( k \), \( k^{3}-k \) is divisible by 3. We need to show that \( (k+1)^{3}-(k+1) \) is also divisible by 3. Expanding \( (k+1)^{3}-(k+1) \): \[ (k+1)^{3}-(k+1) = k^{3}+3k^{2}+3k+1-k-1 = k^{3}+3k^{2}+2k \] Since \( k^{3}+3k^{2}+2k \) is divisible by 3 by the inductive hypothesis, we have shown that \( (k+1)^{3}-(k+1) \) is divisible by 3. Therefore, by mathematical induction, \( \forall \mu \in \mathbb{N} n^{3}-n \) is divisible by 3. c) Given that \( f(x)=3x^{2}+4 \), we need to find: i. \( f(2) \) ii. \( f^{-1}(7) \) i. To find \( f(2) \), we substitute \( x = 2 \) into the function \( f(x) \): \[ f(2) = 3(2)^{2}+4 = 3(4)+4 = 12+4 = 16 \] ii. To find \( f^{-1}(7) \), we need to find the value of \( x \) such that \( f(x) = 7 \). This means solving the equation \( 3x^{2}+4 = 7 \) for \( x \). Solving the equation: \[ 3x^{2}+4 = 7 \] \[ 3x^{2} = 3 \] \[ x^{2} = 1 \] \[ x = \pm 1 \] Therefore, \( f^{-1}(7) = \pm 1 \).

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

Consider the truth table for the expression \([p \land (p \rightarrow q)] \rightarrow q\). When \(p\) is true, \(p \rightarrow q\) can either be true or false depending on \(q\). The expression states that if \(p\) is true, then for the whole statement to remain true, \(q\) must also be true. Thus, in all possible scenarios, the expression holds true, confirming it's indeed a tautology. To prove that \(n^3 - n\) is divisible by 3 for all natural numbers \(n\), consider \(n\) modulo 3. For \(n \equiv 0 \ (\text{mod} \ 3)\), \(n^3 - n \equiv 0 - 0 = 0 \ (\text{mod} \ 3)\); for \(n \equiv 1\), \(n^3 - n \equiv 1 - 1 = 0 \ (\text{mod} \ 3)\); and for \(n \equiv 2\), \(n^3 - n \equiv 8 - 2 = 6 \equiv 0 \ (\text{mod} \ 3)\). Thus, in all cases, \(n^3 - n\) is divisible by 3.

preguntas relacionadas

Exercice 1. Soit \[ \mathcal{B}=\left\{\left[\begin{array}{ll} 1 & 0 \\ 0 & 0 \end{array}\right],\left[\begin{array}{ll} 0 & 1 \\ 0 & 0 \end{array}\right],\left[\begin{array}{ll} 0 & 0 \\ 1 & 0 \end{array}\right],\left[\begin{array}{ll} 0 & 0 \\ 0 & 1 \end{array}\right]\right\} \] la base canonique de \( \operatorname{Mat}_{2}(\mathbb{R}) \) et soit \( f: \operatorname{Mat}_{2}(\mathbb{R}) \rightarrow \operatorname{Mat}_{2}(\mathbb{R}) \) l'endomorphisme de \( \operatorname{Mat}_{2}(\mathbb{R}) \) tel que, en base canonique, \[ f\left(\left[\begin{array}{ll} x_{1} & x_{2} \\ x_{3} & x_{4} \end{array}\right]\right)=\left(\left[\begin{array}{cc} x_{1}+2 x_{3} & 2 x_{1}-x_{2}+4 x_{3}-2 x_{4} \\ -x_{3} & -2 x_{3}+x_{4} \end{array}\right]\right) \] (a) Montrer que \[ A=\mu_{\mathcal{B}, \mathcal{B}}(f)=\left(\begin{array}{cccc} 1 & 0 & 2 & 0 \\ 2 & -1 & 4 & -2 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & -2 & 1 \end{array}\right) \] où \( \mu_{\mathcal{B}, \mathcal{B}}(f) \) est la matrice associée à \( f \) dans la base canonique. (b) Déterminer le polynôme caractéristique \( \chi_{f}(x) \). (c) Déterminer les valeurs propres de \( f \), leurs multiplicités algébriques et montrer que l'endomorphisme \( f \) est diagonalisable. (d) Déterminer une base \( \mathcal{B}^{\prime} \) de \( \operatorname{Mat}_{2}(\mathbb{R}) \) formée de vecteurs propres de \( \operatorname{Mat}_{2}(\mathbb{R}) \), la matrice de changement de base \( P:=\mu_{\mathcal{B}^{\prime}, \mathcal{B}}\left(\operatorname{Id}_{\mathrm{Mat}_{2}(\mathbb{R})}\right) \) et la matrice diagonale \( D:=\mu_{\mathcal{B}^{\prime}, \mathcal{B}^{\prime}}(f) \) telles que \[ \mu_{\mathcal{B}^{\prime}, \mathcal{B}^{\prime}}(f)=\left(\mu_{\mathcal{B}^{\prime}, \mathcal{B}}\left(\operatorname{Id}_{\operatorname{Mat}_{2}(\mathbb{R})}\right)\right)^{-1} \mu_{\mathcal{B}, \mathcal{B}}(f) \mu_{\mathcal{B}^{\prime}, \mathcal{B}}\left(\operatorname{Id}_{\operatorname{Mat}_{2}(\mathbb{R})}\right) \] Autrement dit, \[ D=P^{-1} A P \] où \( A=\mu_{\mathcal{B}, \mathcal{B}}(f) \).
Otro France Jan 22, 2025

Latest Other Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad