Pregunta
upstudy study bank question image url

Where does Jeremiah get the equation ' \( 21 n=45+18 n \) ' from?

Ask by Mcfarlane Crawford. in the United States
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

Jeremiah likely derived the equation \( 21n = 45 + 18n \) from a problem where he was comparing two quantities, such as costs or amounts, and set them equal to find the value of \( n \).

Solución

Jeremiah likely derived the equation \( 21n = 45 + 18n \) from a problem that involves setting two expressions equal to each other based on specific conditions or relationships described in that problem. While I don't have the exact context of Jeremiah's situation, I can provide a general explanation of how such an equation might arise. ### Common Scenarios Leading to \( 21n = 45 + 18n \) 1. **Comparing Two Quantities:** - **Example:** Suppose Jeremiah is comparing the total cost of two different plans. - **Plan A:** Costs \$21 per item, so the total cost is \( 21n \), where \( n \) is the number of items. - **Plan B:** Has a fixed fee of \$45 plus \$18 per item, so the total cost is \( 45 + 18n \). - **Setting Them Equal:** To find out when both plans cost the same, Jeremiah sets the total costs equal: \[ 21n = 45 + 18n \] 2. **Balancing Equations in Mixture Problems:** - **Example:** If Jeremiah is mixing two solutions with different concentrations and wants the final mixture to have a specific concentration, he might set up an equation where the total amounts of a particular substance from both solutions equal the desired amount in the mixture. - The equation could look something like: \[ 21n = 45 + 18n \] where each term represents the amount of the substance from each part of the mixture. 3. **Solving for Equilibrium in Financial or Physical Problems:** - **Example:** In a job where Jeremiah earns a commission, he might set his earnings from this commission equal to a base salary plus a different commission structure. - The equation: \[ 21n = 45 + 18n \] could represent equating two different earning scenarios to find the number of units \( n \) needed to reach equilibrium. ### Solving the Equation To provide further clarity, here's how Jeremiah would solve the equation: \[ 21n = 45 + 18n \] 1. **Subtract \( 18n \) from both sides to gather like terms:** \[ 21n - 18n = 45 \] \[ 3n = 45 \] 2. **Divide both sides by 3 to solve for \( n \):** \[ n = \frac{45}{3} = 15 \] So, \( n = 15 \). This means that under the given conditions, whatever \( n \) represents (e.g., number of items, hours worked, etc.), the value is 15. ### Conclusion Without specific details about Jeremiah's problem, I can only speculate on the exact origin of the equation. However, equations of this form are commonly used in various algebraic contexts where two expressions involving the same variable are set equal to find the value of that variable. If you provide more details about the original problem Jeremiah is solving, I can offer a more precise explanation.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

Jeremiah likely derives the equation \( 21n = 45 + 18n \) from a problem involving quantities and relationships that must balance out. For instance, if he is trying to find out how many items he needs for a certain number of participants, he might set up the left side (21 times) to represent the total he needs and the right side (45 plus a portion of 18 times) to represent what is already available plus what can be contributed. To solve this equation, Jeremiah would typically isolate \( n \) by first getting all the \( n \) terms on one side and the constants on the other. Simplifying that leads him to find the number of items or participants he’s looking for. Remembering to combine like terms is key, so he’d subtract \( 18n \) from both sides, resulting in the simplified equation \( 3n = 45 \), making it straightforward to solve for \( n \).

preguntas relacionadas

PHIẾU: PHÉP CỘNG, TRỪ PHÂN SỐ HỌ VÀ TÊN:.............................LỚP 8A4 Bài 1. Thực hiện phép tính: a) \( \frac{x-5}{5}+\frac{1-x}{5} \) b) \( \frac{x-y}{8}+\frac{2 y}{8} \) c) \( \frac{x^{2}+1}{x-2}-\frac{1-2 x}{x-2} \) d) \( \frac{4 x+1}{3}-\frac{x-2}{3} \) e) \( \frac{4 x-1}{3 x^{2} y}-\frac{7 x-1}{3 x^{2} y} \) f) \( \frac{3 x+2 y}{x-y}-\frac{2 x+3 y}{x-y} \) d) \( \frac{5 x y^{2}-x^{2} y}{3 x y}-\frac{4 x y^{2}+x^{2} y}{3 x y} \) e) \( \frac{x+1}{a-b}+\frac{x-1}{a-b}-\frac{x+3}{a-b} \) f) \( \frac{5 x y-4 y}{2 x^{2} y^{3}}+\frac{3 x y+4 y}{2 x^{2} y^{3}} \) h) \( \frac{x^{2}+4}{x-2}+\frac{4 x}{2-x} \) i) \( \frac{2 x^{2}-x y}{x-y}+\frac{x y+y^{2}}{y-x}-\frac{2 y^{2}-x^{2}}{x-y} \) Bài 2: Thực hiện phép tính: a) \( \frac{2 x+4}{10}+\frac{2-x}{15} \) b) \( \frac{x^{2}}{x^{2}+3 x}+\frac{3}{x+3}+\frac{3}{x} \) c) \( \frac{2}{x+y}-\frac{1}{y-x}+\frac{-3 x}{x^{2}-y^{2}} \) d) \( \frac{4}{x+2}+\frac{2}{x-2}+\frac{5 x-6}{4-x^{2}} \); e) \( \frac{1-3 x}{2 x}+\frac{3 x-2}{2 x-1}+\frac{3 x-2}{2 x-4 x^{2}} \); f) \( \frac{x^{2}+2}{x^{3}-1}+\frac{2}{x^{2}+x+1}+\frac{1}{1-x} \) Bài 3. Làm tính trừ các phân thức sau: a) \( \frac{4 x+1}{3}-\frac{x-2}{3} \) b) \( \frac{4 x-1}{3 x^{2} y}-\frac{7 x-1}{3 x^{2} y} \) c) \( \frac{3 x+2 y}{x-y}-\frac{2 x+3 y}{x-y} \) Bài 4. Làm các phép tính a) \( \frac{x y-1}{2 x-y}-\frac{1-2 x^{2}}{y-2 x} \) b) \( \frac{3 x y^{2}+x^{2} y}{x^{2} y-x y^{2}}-\frac{3 x^{2} y+x y^{2}}{x y(x-y)} \) c) \( \frac{x+9}{x^{2}-9}-\frac{3}{x^{2}+3 x} \) Bài 5. Thực hiện phép tính a) \( \frac{5 x^{2}}{6 x-6 y}-\frac{2 x^{2}}{3 y-3 x} \) b) \( \frac{y}{x y-5 x^{2}}-\frac{25 x-15 y}{25 x^{2}-y^{2}} \) c) \( \frac{1}{2 x-3}-\frac{2}{2 x+3}-\frac{6}{4 x^{2}-9} \) Bài 6. Rút gọn rồi tính giá trị của biểu thức a) \( \frac{x+1}{x-1}-\frac{4 x}{x^{2}-1} \) với \( x=-2 \) b) \( \frac{1}{x y-x^{2}}-\frac{1}{y^{2}-x y} \) với \( x=-5 ; y=\frac{-1}{5} \) Bài 7. Chứng minh biểu thức sau không phụ thuộc vào x : \[ A=\frac{11 x}{2 x-3}-\frac{x-18}{3-2 x} \quad B=\frac{1}{x+1}-\frac{2 x}{x-1}+\frac{x+3}{x^{2}-1} \] Bài 8. Chứng minh biểu thức sau không phụ thuộc vào \( \mathrm{x}, \mathrm{y} \) : \[ D=\frac{2 x+1}{x-2 y}-\frac{5 y+2}{x-2 y}-\frac{y+1}{2 y-x} \quad K=\frac{x+y}{x}-\frac{x}{x-y}+\frac{y^{2}}{x^{2}-x y} \]
Álgebra Vietnam Jan 24, 2025
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad