Responder
- **E11:** The induced voltage is **18 volts**.
- **E12a:** The initial magnetic flux is **6.48 T·m²**.
- **E12b:** The average induced voltage is **16.2 V**.
Solución
Sure, let's solve each problem step by step.
---
### **E11. Determining the Average Voltage Induced in a Coil**
**Problem Statement:**
The magnetic flux through a coil of wire changes from \( 9 \, \text{T} \cdot \text{m}^2 \) to zero in a time of \( 0.50 \, \text{s} \). What is the magnitude of the average voltage induced in the coil during this change?
**Solution:**
To find the induced voltage, we use **Faraday's Law of Electromagnetic Induction**, which states:
\[
\mathcal{E} = -N \frac{\Delta \Phi}{\Delta t}
\]
Where:
- \( \mathcal{E} \) is the induced electromotive force (emf) in volts (V),
- \( N \) is the number of turns in the coil,
- \( \Delta \Phi \) is the change in magnetic flux in tesla-square meters (T·m²),
- \( \Delta t \) is the time interval in seconds (s).
**Assumptions:**
- The problem mentions "a coil of wire" without specifying the number of turns. Typically, if not specified, assume \( N = 1 \).
**Given:**
- Initial magnetic flux, \( \Phi_{\text{initial}} = 9 \, \text{T} \cdot \text{m}^2 \)
- Final magnetic flux, \( \Phi_{\text{final}} = 0 \, \text{T} \cdot \text{m}^2 \)
- Time interval, \( \Delta t = 0.50 \, \text{s} \)
**Calculations:**
1. **Determine the Change in Magnetic Flux:**
\[
\Delta \Phi = \Phi_{\text{final}} - \Phi_{\text{initial}} = 0 - 9 = -9 \, \text{T} \cdot \text{m}^2
\]
2. **Calculate the Induced EMF:**
\[
|\mathcal{E}| = | -N \frac{\Delta \Phi}{\Delta t} | = N \left| \frac{\Delta \Phi}{\Delta t} \right|
\]
Substituting the values:
\[
|\mathcal{E}| = 1 \times \left| \frac{-9}{0.50} \right| = \frac{9}{0.50} = 18 \, \text{V}
\]
**Answer:**
The magnitude of the average voltage induced in the coil is **18 volts**.
---
### **E12. Analyzing a Multi-Turn Coil's Magnetic Flux and Induced Voltage**
**Problem Statement:**
A coil of wire with 120 turns and a cross-sectional area of \( 0.03 \, \text{m}^2 \) lies with its plane perpendicular to a magnetic field of magnitude \( 1.8 \, \text{T} \). The coil is rapidly removed from the magnetic field in a time of \( 0.4 \, \text{s} \).
**Part a. What is the initial magnetic flux through the coil?**
**Solution:**
**Given:**
- Number of turns, \( N = 120 \)
- Cross-sectional area, \( A = 0.03 \, \text{m}^2 \)
- Magnetic field, \( B = 1.8 \, \text{T} \)
- Angle between the magnetic field and the normal to the coil, \( \theta = 0^\circ \) (since the plane is perpendicular to \( \mathbf{B} \))
**Formula for Magnetic Flux (\( \Phi \)):**
\[
\Phi = B \cdot A \cdot \cos \theta
\]
Since the magnetic field is perpendicular to the plane of the coil, \( \cos \theta = \cos 0^\circ = 1 \).
**Calculations:**
1. **Flux per Turn:**
\[
\Phi_{\text{per turn}} = B \cdot A \cdot \cos \theta = 1.8 \times 0.03 \times 1 = 0.054 \, \text{T} \cdot \text{m}^2
\]
2. **Total Magnetic Flux Linkage for the Coil:**
\[
\Phi_{\text{total}} = N \times \Phi_{\text{per turn}} = 120 \times 0.054 = 6.48 \, \text{T} \cdot \text{m}^2
\]
**Answer:**
The initial magnetic flux through the coil is **6.48 T·m²**.
---
**Part b. What is the average value of the voltage induced in the coil?**
**Solution:**
**Given:**
- Time interval for removal, \( \Delta t = 0.4 \, \text{s} \)
- Initial magnetic flux linkage, \( \Phi_{\text{initial}} = 6.48 \, \text{T} \cdot \text{m}^2 \)
- Final magnetic flux linkage, \( \Phi_{\text{final}} = 0 \, \text{T} \cdot \text{m}^2 \) (since the coil is removed from the field)
**Faraday's Law:**
\[
\mathcal{E} = -N \frac{\Delta \Phi}{\Delta t}
\]
For magnitude:
\[
|\mathcal{E}| = N \left| \frac{\Delta \Phi}{\Delta t} \right|
\]
**Calculations:**
1. **Change in Magnetic Flux:**
\[
\Delta \Phi = \Phi_{\text{final}} - \Phi_{\text{initial}} = 0 - 6.48 = -6.48 \, \text{T} \cdot \text{m}^2
\]
2. **Calculate the Induced EMF:**
\[
|\mathcal{E}| = 120 \times \left| \frac{-6.48}{0.4} \right| = 120 \times \frac{6.48}{0.4} = 120 \times 16.2 = 1944 \, \text{V}
\]
Wait, this result seems excessively high. Let me double-check the calculations.
**Correction:**
Actually, the total flux linkage already accounts for the number of turns. Therefore, the correct formula should be:
\[
|\mathcal{E}| = \left| \frac{\Delta \Phi_{\text{total}}}{\Delta t} \right|
\]
So,
\[
|\mathcal{E}| = \frac{6.48}{0.4} = 16.2 \, \text{V}
\]
**Alternatively:**
If calculating using flux per turn:
\[
|\mathcal{E}| = N \times \left| \frac{\Delta \Phi_{\text{per turn}}}{\Delta t} \right| = 120 \times \frac{0.054}{0.4} = 120 \times 0.135 = 16.2 \, \text{V}
\]
**Answer:**
The average induced voltage in the coil is **16.2 volts**.
---
**Summary of Answers:**
- **E11:** The induced voltage is **18 V**.
- **E12a:** The initial magnetic flux is **6.48 T·m²**.
- **E12b:** The average induced voltage is **16.2 V**.
Revisado y aprobado por el equipo de tutoría de UpStudy
Explicar
Simplifique esta solución