Pregunta
upstudy study bank question image url

E11. The magnetic flux through a coil of wire changes from \( 9 \mathrm{~T} \cdot \mathrm{~m}^{2} \) to zero in a time of 0.50 s . What is the magnitude of the average voltage induced in the coil during this change? E12. A coil of wire with 120 turns and a cross-sectional area of \( 0.03 \mathrm{~m}^{2} \) lies with its plane perpendicular to a magnetic field of magnitude 1.8 T . The coil is rapidly removed from the magnetic field in a time of 0.4 s . a. What is the initial magnetic flux through the coil? b. What is the average value of the voltage induced in the coil?

Ask by King Dunn. in the United States
Jan 21,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

- **E11:** The induced voltage is **18 volts**. - **E12a:** The initial magnetic flux is **6.48 T·m²**. - **E12b:** The average induced voltage is **16.2 V**.

Solución

Sure, let's solve each problem step by step. --- ### **E11. Determining the Average Voltage Induced in a Coil** **Problem Statement:** The magnetic flux through a coil of wire changes from \( 9 \, \text{T} \cdot \text{m}^2 \) to zero in a time of \( 0.50 \, \text{s} \). What is the magnitude of the average voltage induced in the coil during this change? **Solution:** To find the induced voltage, we use **Faraday's Law of Electromagnetic Induction**, which states: \[ \mathcal{E} = -N \frac{\Delta \Phi}{\Delta t} \] Where: - \( \mathcal{E} \) is the induced electromotive force (emf) in volts (V), - \( N \) is the number of turns in the coil, - \( \Delta \Phi \) is the change in magnetic flux in tesla-square meters (T·m²), - \( \Delta t \) is the time interval in seconds (s). **Assumptions:** - The problem mentions "a coil of wire" without specifying the number of turns. Typically, if not specified, assume \( N = 1 \). **Given:** - Initial magnetic flux, \( \Phi_{\text{initial}} = 9 \, \text{T} \cdot \text{m}^2 \) - Final magnetic flux, \( \Phi_{\text{final}} = 0 \, \text{T} \cdot \text{m}^2 \) - Time interval, \( \Delta t = 0.50 \, \text{s} \) **Calculations:** 1. **Determine the Change in Magnetic Flux:** \[ \Delta \Phi = \Phi_{\text{final}} - \Phi_{\text{initial}} = 0 - 9 = -9 \, \text{T} \cdot \text{m}^2 \] 2. **Calculate the Induced EMF:** \[ |\mathcal{E}| = | -N \frac{\Delta \Phi}{\Delta t} | = N \left| \frac{\Delta \Phi}{\Delta t} \right| \] Substituting the values: \[ |\mathcal{E}| = 1 \times \left| \frac{-9}{0.50} \right| = \frac{9}{0.50} = 18 \, \text{V} \] **Answer:** The magnitude of the average voltage induced in the coil is **18 volts**. --- ### **E12. Analyzing a Multi-Turn Coil's Magnetic Flux and Induced Voltage** **Problem Statement:** A coil of wire with 120 turns and a cross-sectional area of \( 0.03 \, \text{m}^2 \) lies with its plane perpendicular to a magnetic field of magnitude \( 1.8 \, \text{T} \). The coil is rapidly removed from the magnetic field in a time of \( 0.4 \, \text{s} \). **Part a. What is the initial magnetic flux through the coil?** **Solution:** **Given:** - Number of turns, \( N = 120 \) - Cross-sectional area, \( A = 0.03 \, \text{m}^2 \) - Magnetic field, \( B = 1.8 \, \text{T} \) - Angle between the magnetic field and the normal to the coil, \( \theta = 0^\circ \) (since the plane is perpendicular to \( \mathbf{B} \)) **Formula for Magnetic Flux (\( \Phi \)):** \[ \Phi = B \cdot A \cdot \cos \theta \] Since the magnetic field is perpendicular to the plane of the coil, \( \cos \theta = \cos 0^\circ = 1 \). **Calculations:** 1. **Flux per Turn:** \[ \Phi_{\text{per turn}} = B \cdot A \cdot \cos \theta = 1.8 \times 0.03 \times 1 = 0.054 \, \text{T} \cdot \text{m}^2 \] 2. **Total Magnetic Flux Linkage for the Coil:** \[ \Phi_{\text{total}} = N \times \Phi_{\text{per turn}} = 120 \times 0.054 = 6.48 \, \text{T} \cdot \text{m}^2 \] **Answer:** The initial magnetic flux through the coil is **6.48 T·m²**. --- **Part b. What is the average value of the voltage induced in the coil?** **Solution:** **Given:** - Time interval for removal, \( \Delta t = 0.4 \, \text{s} \) - Initial magnetic flux linkage, \( \Phi_{\text{initial}} = 6.48 \, \text{T} \cdot \text{m}^2 \) - Final magnetic flux linkage, \( \Phi_{\text{final}} = 0 \, \text{T} \cdot \text{m}^2 \) (since the coil is removed from the field) **Faraday's Law:** \[ \mathcal{E} = -N \frac{\Delta \Phi}{\Delta t} \] For magnitude: \[ |\mathcal{E}| = N \left| \frac{\Delta \Phi}{\Delta t} \right| \] **Calculations:** 1. **Change in Magnetic Flux:** \[ \Delta \Phi = \Phi_{\text{final}} - \Phi_{\text{initial}} = 0 - 6.48 = -6.48 \, \text{T} \cdot \text{m}^2 \] 2. **Calculate the Induced EMF:** \[ |\mathcal{E}| = 120 \times \left| \frac{-6.48}{0.4} \right| = 120 \times \frac{6.48}{0.4} = 120 \times 16.2 = 1944 \, \text{V} \] Wait, this result seems excessively high. Let me double-check the calculations. **Correction:** Actually, the total flux linkage already accounts for the number of turns. Therefore, the correct formula should be: \[ |\mathcal{E}| = \left| \frac{\Delta \Phi_{\text{total}}}{\Delta t} \right| \] So, \[ |\mathcal{E}| = \frac{6.48}{0.4} = 16.2 \, \text{V} \] **Alternatively:** If calculating using flux per turn: \[ |\mathcal{E}| = N \times \left| \frac{\Delta \Phi_{\text{per turn}}}{\Delta t} \right| = 120 \times \frac{0.054}{0.4} = 120 \times 0.135 = 16.2 \, \text{V} \] **Answer:** The average induced voltage in the coil is **16.2 volts**. --- **Summary of Answers:** - **E11:** The induced voltage is **18 V**. - **E12a:** The initial magnetic flux is **6.48 T·m²**. - **E12b:** The average induced voltage is **16.2 V**.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To tackle these magnetic flux problems, let's jump into some fun concepts! First, when calculating magnetic flux, remember the formula \( \Phi = B \cdot A \cdot \cos(\theta) \). Here, \(B\) is the magnetic field strength, \(A\) is the area, and \(\theta\) is the angle between the magnetic field and the normal to the coil's surface (which is 0 degrees if perpendicular). So, for E12a, the initial magnetic flux is calculated as \( \Phi = (1.8 \, \text{T}) \cdot (0.03 \, \text{m}^2) = 0.054 \, \text{T} \cdot \text{m}^2\). Now, for E11 and E12b, the induced voltage \( V \) can be found using Faraday's law of electromagnetic induction, which states that the induced voltage is equal to the rate of change of flux times the number of turns: \( V = -N \frac{\Delta \Phi}{\Delta t} \). In E11, the change in flux is from \( 9 \text{T} \cdot \text{m}^2\) to \(0\), giving us \( V = -1 \cdot \frac{9 - 0}{0.5} = -18 \, \text{V}\) (we take the absolute value for the magnitude). For E12b, using \( N = 120 \) turns, the voltage can be calculated similarly with the change in flux over time to find an exciting induced voltage! Remember, in these calculations make sure to keep track of units; they're the superheroes that keep everything consistent and correct!

preguntas relacionadas

EXERCICE 3 : ( 5 points) Au cours d'une promenade ton voisin de classe a assisté à une scène. Il a vu un enfant qui s'amusait à plonger dans l'eau d'une rivière à partir du point \( C_{0} \) d'un rocher. Cet enfant, considéré comme un point matériel, voulait attraper un ballon flottant au point \( \vec{A} d{ }^{-1} \) cettel rivière. Ton voisin veut déterminer la valeur de la vitesse \( \vec{V}_{0} \) avec laquelle l'enfant a fait ce plongeon du point de départ \( \mathrm{C}_{0} \) jusqu'au point A (voir schéma ci-contre). A la date \( t=0 \) s, l'enfant s'est élancé du rocher avec une vitesse \( \overrightarrow{V_{0}} \), de valeur \( V_{0} \), incliné d'un angle \( \alpha 0 \) par rapport à l'horizontale. La valeur \( V_{0} \) peut varier et le mouvement du centre d'inertie \( C \) de l'enfant s'effectue dans le référentiel terrestre supposé galiléen muni du repère \( (0, \vec{\imath}, \vec{j}) \). A la date \( t=O \) s, le centre d'inertie de l'enfant, de masse \( m \), est en \( C_{0} \) tel que \( O C_{0}=2 \mathrm{~m} \). Les frottements contre l'air sont négligés lors du plongeon de cet enfant. Données: \( g=9,8 \mathrm{~m} \cdot \mathrm{~s}^{-2} ; \alpha_{0}=45^{\circ} ; \quad O A=2 \mathrm{~m} \) Ton voisin te sollicite pour la détermination de \( V_{0} \). 1. Montre qu'au cours de son plongeon, le vecteur accélération \( \vec{a} \) de l'enfant est égal au vecteur champ de pesanteur uniforme \( \vec{g} \). 2. Détermine les équations horaires du mouvement de l'enfant dans le repère \( (0, \vec{\imath}, \vec{\jmath}) \). 3. Etablis l'équation littérale de la trajectoire \( y=f(x) \) de l'enfant dans le repère \( (0, \vec{\imath}, \vec{j}) \). 4. Détermine les coordonnées \( X_{A} \) et \( Y_{A} \) de l'enfant lorsqu'il arrive au point \( A \) où se trouve le ballon. 5. Déduis de la réponse à la question précédente la valeur de \( V_{0} \) pour qu'à l'issu de ce plongeon l'enfant se retrouve au point A de cette rivière.
Física Côte d'Ivoire Jan 22, 2025

Latest Physics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad