Pregunta
The equation \( 15 x^{2}-1 x-2=0 \) has solutions of the form \[ x=\frac{N \pm \sqrt{D}}{M} \] (A) Use the quadratic formula to solve this equation and find the appropriate integer values of \( N, M \), and \( D \). Do not worry about simplifying the \( \sqrt{D} \) yet in this part of the problem. \[ N=\square ; D=\square \] s=
Ask by Washington Romero. in the United States
Jan 23,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
\( N = 1 \), \( D = 121 \), \( M = 30 \).
Solución
Solve the equation \( 15x^{2}-1x-2=0 \).
Solve the quadratic equation by following steps:
- step0: Solve by factoring:
\(15x^{2}-1\times x-2=0\)
- step1: Multiply the terms:
\(15x^{2}-x-2=0\)
- step2: Factor the expression:
\(\left(3x+1\right)\left(5x-2\right)=0\)
- step3: Separate into possible cases:
\(\begin{align}&5x-2=0\\&3x+1=0\end{align}\)
- step4: Solve the equation:
\(\begin{align}&x=\frac{2}{5}\\&x=-\frac{1}{3}\end{align}\)
- step5: Rewrite:
\(x_{1}=-\frac{1}{3},x_{2}=\frac{2}{5}\)
The solutions to the equation \(15x^{2}-1x-2=0\) are \(x_{1}=-\frac{1}{3}\) and \(x_{2}=\frac{2}{5}\).
To find the appropriate integer values of \(N\), \(M\), and \(D\) using the quadratic formula, we can compare the solutions obtained with the general form of the quadratic formula:
\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \]
In this case, \(a = 15\), \(b = -1\), and \(c = -2\).
Substituting these values into the quadratic formula, we get:
\[ x = \frac{-(-1) \pm \sqrt{(-1)^2 - 4(15)(-2)}}{2(15)} \]
\[ x = \frac{1 \pm \sqrt{1 + 120}}{30} \]
\[ x = \frac{1 \pm \sqrt{121}}{30} \]
\[ x = \frac{1 \pm 11}{30} \]
Therefore, the appropriate integer values are:
- \(N = 1\)
- \(M = 30\)
- \(D = 121\)
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
Mind Expander
To solve the quadratic equation \(15 x^{2}-1 x-2=0\) using the quadratic formula \(x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}\), we first identify the coefficients: \(a = 15\), \(b = -1\), and \(c = -2\). Calculating the discriminant: \[D = b^2 - 4ac = (-1)^2 - 4(15)(-2) = 1 + 120 = 121.\] Now substituting into the quadratic formula: \[x = \frac{-(-1) \pm \sqrt{121}}{2(15)} = \frac{1 \pm 11}{30}.\] This gives us the values of \(N\), \(D\), and \(M\) as follows: \[N = 1, \quad D = 121, \quad M = 30.\] So we have: \[N = 1; D = 121\]
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium