Pregunta
upstudy study bank question image url

QUESTION 5 Historically, the proportion of students entering a university who finished in 4 years or less was \( 63 \% \). To test whether this proportion has decreased, 114 students were examined and \( 51 \% \) had finished in 4 years or less. To determine whether the proportion of students who finish in 4 year or less has statistically significantly decreased (at the \( 5 \% \) level of signficance), what is the critical value? (please round your answer to 2 decimal places)

Ask by Tyler Stephens. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The critical value is **-1.65**.

Solución

To determine the critical value for testing whether the proportion of students who finish in 4 years or less has **decreased** from the historical proportion of \( 63\% \), follow these steps: ### Step 1: Define the Hypotheses - **Null Hypothesis (\( H_0 \))**: \( p \geq 0.63 \) (The proportion has not decreased) - **Alternative Hypothesis (\( H_a \))**: \( p < 0.63 \) (The proportion has decreased) ### Step 2: Determine the Significance Level - The significance level (\( \alpha \)) is \( 5\% \) or \( 0.05 \). ### Step 3: Identify the Critical Value - Since this is a **left-tailed test**, you need to find the z-score that corresponds to the cumulative probability of \( \alpha = 0.05 \). Using standard normal distribution tables or a calculator: - The critical z-value for a left-tailed test at \( \alpha = 0.05 \) is approximately **-1.645**. ### Step 4: Round the Critical Value - Rounded to two decimal places, the critical value is **-1.65**. ### Conclusion If the calculated test statistic is less than **-1.65**, you would reject the null hypothesis, concluding that there is significant evidence at the \( 5\% \) level to suggest that the proportion of students finishing in 4 years or less has decreased. **Critical Value:** \(-1.65\)

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To determine the critical value for this hypothesis test, we're looking at a one-tailed z-test since we're testing whether the proportion has decreased. At a \( 5\% \) significance level, the critical z-value can be found using z-tables or statistical software. For a left-tailed test, the critical value at \( \alpha = 0.05 \) is approximately -1.645. This means if our calculated z-value falls below -1.645, we can reject the null hypothesis in favor of the alternative hypothesis that the proportion has indeed decreased. To recap, the critical value for this scenario is approximately -1.65 (rounded to two decimal places) for a hypothesis test assessing whether the proportion of students finishing in four years or less has significantly decreased.

preguntas relacionadas

Latest Statistics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad