Pregunta
upstudy study bank question image url

The size \( P \) of a certain insect population at time \( t \) (in days) obeys the function \( P(t)=600 e^{0.04 t} \) (a) Determine the number of insects at \( t=0 \) days, (b) What is the growth rate of the insect population? (c) Graph the function using a graphing utility. (d) What is the population after 10 days? (e) When will the insect population reach 720 ? (f) When will the insect population double?

Ask by Schofield Potter. in the United States
Jan 22,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

- **a)** 600 insects at \( t = 0 \) days - **b)** Growth rate is 4% per day - **c)** Graph shows exponential growth starting at 600 insects - **d)** Population after 10 days is approximately 895 insects - **e)** Population reaches 720 insects after about 4.56 days - **f)** Population doubles after approximately 17.33 days

Solución

Let's analyze the given population model step by step. The population \( P(t) \) at time \( t \) (in days) is given by: \[ P(t) = 600 e^{0.04 t} \] ### **a) Determine the number of insects at \( t = 0 \) days** To find the initial population at \( t = 0 \), substitute \( t = 0 \) into the function: \[ P(0) = 600 e^{0.04 \times 0} = 600 e^{0} = 600 \times 1 = 600 \] **Answer:** The initial number of insects at \( t = 0 \) days is **600**. --- ### **b) What is the growth rate of the insect population?** The general form of an exponential growth function is: \[ P(t) = P_0 e^{rt} \] where: - \( P_0 \) is the initial population, - \( r \) is the growth rate, - \( t \) is time. Comparing this with the given function: \[ P(t) = 600 e^{0.04 t} \] We can see that the growth rate \( r \) is **0.04 per day**. **Answer:** The growth rate of the insect population is **0.04** (or **4% per day**). --- ### **c) Graph the function using a graphing utility** While I can't produce a graph directly here, I can guide you on how to graph the function \( P(t) = 600 e^{0.04 t} \) using common tools: **Using Desmos (Online Graphing Calculator):** 1. Go to [Desmos Graphing Calculator](https://www.desmos.com/calculator). 2. In the input field, type: `P(t) = 600 * e^(0.04 * t)` 3. Press Enter to see the graph. **Using Microsoft Excel:** 1. Create a table with values of \( t \) (e.g., from 0 to 100 days). 2. Calculate \( P(t) \) for each \( t \) using the formula `=600*EXP(0.04*A2)` assuming \( t \) is in cell A2. 3. Select the data and insert a scatter plot with a smooth curve. **Graph Characteristics:** - **Initial Value:** Starts at 600 when \( t = 0 \). - **Growth:** Exponential increase; the curve becomes steeper over time. - **Asymptote:** \( P(t) \) increases without bound as \( t \) increases. --- ### **d) What is the population after 10 days?** To find the population at \( t = 10 \) days, substitute \( t = 10 \) into the function: \[ P(10) = 600 e^{0.04 \times 10} = 600 e^{0.4} \] Calculate \( e^{0.4} \): \[ e^{0.4} \approx 1.49182 \] Now, multiply by 600: \[ P(10) \approx 600 \times 1.49182 \approx 895.09 \] **Answer:** After 10 days, the population is approximately **895 insects**. --- ### **e) When will the insect population reach 720?** We need to solve for \( t \) when \( P(t) = 720 \): \[ 720 = 600 e^{0.04 t} \] First, divide both sides by 600: \[ \frac{720}{600} = e^{0.04 t} \quad \Rightarrow \quad 1.2 = e^{0.04 t} \] Take the natural logarithm of both sides: \[ \ln(1.2) = 0.04 t \] Solve for \( t \): \[ t = \frac{\ln(1.2)}{0.04} \] Calculate \( \ln(1.2) \): \[ \ln(1.2) \approx 0.1823216 \] Now, compute \( t \): \[ t \approx \frac{0.1823216}{0.04} \approx 4.55804 \text{ days} \] **Answer:** The population will reach 720 insects after approximately **4.56 days**. --- ### **f) When will the insect population double?** To find when the population doubles, set \( P(t) = 2P_0 = 2 \times 600 = 1200 \): \[ 1200 = 600 e^{0.04 t} \] Divide both sides by 600: \[ 2 = e^{0.04 t} \] Take the natural logarithm of both sides: \[ \ln(2) = 0.04 t \] Solve for \( t \): \[ t = \frac{\ln(2)}{0.04} \] Calculate \( \ln(2) \): \[ \ln(2) \approx 0.6931472 \] Now, compute \( t \): \[ t \approx \frac{0.6931472}{0.04} \approx 17.32868 \text{ days} \] **Answer:** The insect population will double after approximately **17.33 days**. --- **Summary of Answers:** - **a)** 600 insects - **b)** 4% per day - **c)** [Graph described above] - **d)** Approximately 895 insects after 10 days - **e)** Approximately 4.56 days to reach 720 insects - **f)** Approximately 17.33 days to double the population

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

At \( t=0 \) days, the size of the insect population \( P(0) \) can be calculated by substituting \( t=0 \) into the function \( P(t)=600 e^{0.04 t} \). This gives us \( P(0)=600 e^{0} = 600 \). So, there are 600 insects at the start! The growth rate of the insect population is given by the exponent in the function. Here, \( 0.04 \) represents the continuous growth rate, which is equivalent to a \( 4\% \) growth rate per day. This means the bug party is getting livelier every day, growing by about 4% of its size! To determine the insect population after 10 days, substitute \( t=10 \) into the function: \[ P(10) = 600 e^{0.04 \cdot 10} = 600 e^{0.4} \approx 600 \times 1.49182 \approx 894.1 \] Rounding that, we can say there are approximately \( 894 \) insects then. To find when the insect population reaches 720, we need to set \( P(t) = 720 \) and solve for \( t \): \[ 720 = 600 e^{0.04 t} \] Dividing both sides by \( 600 \) gives \( 1.2 = e^{0.04 t} \). Taking the natural logarithm of both sides, we get: \[ \ln(1.2) = 0.04 t \] Solving for \( t \) gives \( t \approx \frac{\ln(1.2)}{0.04} \approx 4.89 \) days. To find when the insect population will double, set \( P(t) = 1200 \): \[ 1200 = 600 e^{0.04 t} \] This simplifies to \( 2 = e^{0.04 t} \). Taking the natural logarithm: \[ \ln(2) = 0.04 t \] Thus, \( t \approx \frac{\ln(2)}{0.04} \approx 17.33 \) days. In summary, it will take about \( 17.33 \) days for the insect population to double! The buzzing is just getting started! 🐞📈

preguntas relacionadas

Latest Biology Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad