Pregunta
upstudy study bank question image url

What is the result of integrating a population growth rate between times \( t=a \) and \( t=b \), where \( b>a \) ? Choose the correct answer. A. Integrating a population growth rate results in the rate of change of the population from time a to time \( b \). B. Integrating a population growth rate results in the net change in the population growth rate from time a to time \( b \). C. Integrating a population growth rate results in the net change of the population from time a to time \( b \).

Ask by Young Chadwick. in the United States
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

Integrating a population growth rate between times \( t = a \) and \( t = b \) results in the net change of the population from time \( a \) to time \( b \).

Solución

To determine the result of integrating a population growth rate between times \( t = a \) and \( t = b \), let's break down what integration represents in this context. **Population Growth Rate (\( r(t) \))**: - The population growth rate \( r(t) \) is the rate at which the population is changing at any given time \( t \). Mathematically, this can be expressed as: \[ r(t) = \frac{dP(t)}{dt} \] where \( P(t) \) is the population at time \( t \). **Integration of the Growth Rate**: - Integrating the growth rate \( r(t) \) from \( t = a \) to \( t = b \) gives: \[ \int_{a}^{b} r(t) \, dt = \int_{a}^{b} \frac{dP(t)}{dt} \, dt = P(b) - P(a) \] - This integral represents the **net change in the population** between times \( a \) and \( b \). **Evaluating the Options**: - **Option A**: Refers to the rate of change of the population, which is actually \( r(t) \), not the integral of \( r(t) \). - **Option B**: Discusses the net change in the population growth rate itself, which is not represented by the integral. - **Option C**: Accurately describes the result of the integral as the net change in the population from time \( a \) to time \( b \). **Correct Answer**: **C. Integrating a population growth rate results in the net change of the population from time a to time \( b \).**

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

Integrating a population growth rate over the interval from \( t=a \) to \( t=b \) gives you the total change in population during that period. So, if you start with a certain number of individuals at time \( a \), the result of this integration tells you how many individuals were added or removed by time \( b \). It's like adding up all the little incremental changes to see the bigger picture! In practical terms, if you have a model predicting a population's growth rate based on factors like birth rates and death rates, integrating allows you to forecast the actual size of the population at a future date. This is crucial for ecologists and urban planners who need to manage resources or understand the dynamics of species in an ecosystem. So, you would choose option C: "Integrating a population growth rate results in the net change of the population from time \( a \) to time \( b \)."

Latest Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad