Pregunta
Fill in the box so that the statement is true. Assume that all bases are not equal to 0 . \( y^{[]}=\frac{1}{y^{6}} \)
Ask by Mitchell Thornton. in the United States
Jan 23,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
The missing exponent is \(-6\).
Solución
To make the statement \( y^{[]} = \frac{1}{y^{6}} \) true, we need to determine the exponent that satisfies the equation.
Recall that:
\[
\frac{1}{y^{6}} = y^{-6}
\]
Therefore, the missing exponent is **-6**.
So, the completed equation is:
\[
y^{-6} = \frac{1}{y^{6}}
\]
**Answer:** \(-6\)
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
The Deep Dive
To solve for the empty box in the equation \( y^{[]} = \frac{1}{y^{6}} \), we need to use the properties of exponents. The term \( \frac{1}{y^{6}} \) can be rewritten as \( y^{-6} \). Therefore, the equation can be updated to \( y^{[]} = y^{-6} \). This means that the exponent in the empty box must be \(-6\). So, we have \( y^{-6} = \frac{1}{y^{6}} \). Thus, the final answer is: \( y^{-6}=\frac{1}{y^{6}} \)
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium