Pregunta
upstudy study bank question image url

\( \frac { \sin ^ { 2 } x ( 90 - x ) \cdot \operatorname { con } ( 160 - x ) } { \cos ( 360 ^ { 2 } - x ) \cdot \cos ( 160 - x ) + \sin + x ) } \)

Ask by Bartlett Coleman. in South Africa
Jan 22,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

\[ \frac{\sin^2 x (90 - x) \cdot \cos(160 - x)}{\cos(360^2 - x) \cdot \cos(160 - x) + \sin(x)} \]

Solución

It seems that the expression provided is quite complex, and the calculation is timing out. Let's break it down step by step to simplify it manually. The expression is: \[ \frac { \sin ^ { 2 } x ( 90 - x ) \cdot \cot ( 160 - x ) } { \cos ( 360 ^ { 2 } - x ) \cdot \cos ( 160 - x ) + \sin ( x ) } \] ### Step 1: Rewrite the cotangent Recall that \(\cot(x) = \frac{\cos(x)}{\sin(x)}\). Therefore, we can rewrite \(\cot(160 - x)\): \[ \cot(160 - x) = \frac{\cos(160 - x)}{\sin(160 - x)} \] ### Step 2: Substitute cotangent in the expression Substituting this into the expression gives: \[ \frac { \sin ^ { 2 } x ( 90 - x ) \cdot \frac{\cos(160 - x)}{\sin(160 - x)} } { \cos ( 360 ^ { 2 } - x ) \cdot \cos ( 160 - x ) + \sin ( x ) } \] ### Step 3: Simplify the numerator The numerator now becomes: \[ \sin^2 x (90 - x) \cdot \cos(160 - x) \] ### Step 4: Rewrite the denominator The denominator remains: \[ \cos(360^2 - x) \cdot \cos(160 - x) + \sin(x) \] ### Step 5: Combine the expression Now we can combine everything: \[ \frac { \sin^2 x (90 - x) \cdot \cos(160 - x) } { \cos(360^2 - x) \cdot \cos(160 - x) + \sin(x) } \] ### Step 6: Analyze the expression At this point, we can analyze the expression further or evaluate it for specific values of \(x\). However, without specific values or further simplification, this is the simplified form of the expression. If you have a specific value for \(x\) or further instructions on how to proceed, please let me know!

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To simplify the expression, first, we need to break it down into manageable parts while keeping in mind the trigonometric identities that can help us. Denote \( y = 90 - x \) and use identities such as \( \sin(90 - x) = \cos(x) \) and \( \cos(90 - x) = \sin(x) \). You can also remember that \( \sin(x) \) and \( \cos(x) \) are periodic functions, which means properties can be leveraged even if specific angles aren't immediately obvious. Combining all these transformations and using angle subtraction formulas can help simplify the expression in steps. Moreover, ensuring you're recognizing patterns between trigonometric functions can lead to powerful simplifications, such as recognizing \( \sin^2(x) + \cos^2(x) = 1 \) or complementary angles summing to 90°. When tackling complex trigonometric expressions, many mistakes come from overlooking these identities or misapplying angle transformations; thus, ensuring you’re consistent with applying the correct identities can save you a lot of headache down the line!

Latest Trigonometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad