Pregunta
Rewrite the expression \( \sqrt[15]{x^{8}} \) using a rational exponent and no radical sign.
Ask by Byrd Montgomery. in the United States
Jan 27,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
\( x^{\frac{8}{15}} \)
Solución
To rewrite the expression \( \sqrt[15]{x^{8}} \) using a rational exponent without a radical sign, you can use the property that \(\sqrt[n]{a^m} = a^{\frac{m}{n}}\).
Applying this property:
\[
\sqrt[15]{x^{8}} = x^{\frac{8}{15}}
\]
**Final Answer:**
\[
x^{\,\frac{8}{15}}
\]
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
Mind Expander
The expression \( \sqrt[15]{x^{8}} \) can be rewritten using a rational exponent as \( x^{\frac{8}{15}} \). This is achieved by recognizing that the nth root of a number can be expressed as that number raised to the power of \( \frac{1}{n} \). In this case, the 15th root corresponds to raising \( x^{8} \) to the power of \( \frac{1}{15} \), which results in \( x^{\frac{8}{15}} \).
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium