Identify the vertex and the Axis of Symmetry (AOS) in the quadratic function \[ f(x)=\frac{-2}{3}(x-1)^{2}+4 \] vertex \( (-1,-4) ; \operatorname{AOS} x=-1 \) vertex ( 1,4 ); \( \operatorname{AOS} x=1 \) vertex \( (1,-4) ; \) AOS \( x=-4 \) vertex \( (-1,4) ; \operatorname{AOS} x=-1 \)
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Bonus Knowledge
The vertex of the given quadratic function \( f(x) = \frac{-2}{3}(x-1)^{2}+4 \) can be identified directly from its vertex form. The vertex is at the point \( (1, 4) \). The Axis of Symmetry (AOS) runs vertically through the x-coordinate of the vertex, hence the AOS is given by \( x = 1 \). It's essential to remember that any quadratic function in vertex form, \( f(x) = a(x-h)^2 + k \), reveals its vertex at the point \( (h, k) \). So, in this case, \( (1, 4) \) tells us precisely where the peak (or trough) of the parabola lies, and knowing that the AOS is always \( x = h \) means you’ll have a quick reference for the symmetry of the graph!