Acceleration Problems: 1. Acceleration is the rate at which what changes? Velocity 2. What is the acceleration of a car moving in a straight-line path that travels at constant speed of \( 100 \mathrm{~km} / \mathrm{h} \) ? \[ a=0 \mathrm{~m} / \mathrm{s}^{2} \] 3. What is the acceleration of a car moving in a straight-line path that increases it speed from rest to \( 100 \mathrm{~km} / \mathrm{h} \) in 0.2 hrs ? \[ 0.0586 \mathrm{~m} / \mathrm{s}^{2} \] 4. Light travels in a straight line at a constant speed of \( 300,000 \mathrm{~km} / \mathrm{s} \). What would the acceleration of light 3 seconds later? \[ 0 \mathrm{~m} / \mathrm{s}^{2} \] 5. A dragster going at \( 15 \mathrm{~m} / \mathrm{s} \) north increases its velocity to \( 25 \mathrm{~m} / \mathrm{s} \) north in 4 seconds. What's its acceleration during that time interval? \[ 2.3 \mathrm{~m} / \mathrm{s}^{2} \] 6. A car going \( 30 \mathrm{~m} / \mathrm{s} \) undergoes an acceleration of \( 2 \mathrm{~m} / \mathrm{s}^{2} \) for 4 seconds. What is its final speed? \[ 38 \mathrm{~m} / \mathrm{s} \] 7. A man on a unicycle pedals for 2 seconds at a speed of \( 6 \mathrm{~m} / \mathrm{s} \) and then pedals another 2 seconds at a rate of \( 6 \mathrm{~m} / \mathrm{s} \). What is the acceleration of the cyclist? \[ 0 \mathrm{~m} / \mathrm{s}^{2} \] 8. If a Porsche accelerates at a rate of \( 25 \mathrm{~km} / \mathrm{h}^{*} \mathrm{~s} \) and goes from rest to \( 125 \mathrm{~km} / \mathrm{hr} \). How long did it take the car to reach its final speed? 5 seconas 9. If a car is traveling at \( 35 \mathrm{~m} / \mathrm{s} \) and the driver sees a deer and slams on her brakes to come to stop in 5 seconds, what is her rate of acceleration? \( -7 \mathrm{mi} \mathrm{s}^{2} \) 10. A rocket decelerates at a rate of \( 5 \mathrm{~m} / \mathrm{s}^{2} \). If the initial velocity of the rocket was \( 200 \mathrm{~m} / \mathrm{s} \), how fast would the rocket be traveling 20 seconds later? How long will it take before the rocket . comes to a stop? Uo seconde Acceleration Calculations
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Beyond the Answer
Ever wonder how the concept of acceleration played a role in the history of science? Back in the day, legendary figures like Galileo and Newton laid down the foundational principles of motion. Galileo famously rolled balls down inclined planes and observed their speeds, while Newton later formulated his laws of motion. These historical moments paved the way for modern physics, helping us understand concepts like acceleration in a more structured way! Acceleration isn’t just for cars and rockets; it can actually help in everyday activities! Imagine you're running to catch a bus. The faster you start running (positive acceleration), the better your chances of making it! Conversely, if you're decelerating to a stop, like when you’re approaching a stoplight, you're utilizing acceleration in your daily life. Knowing how to calculate acceleration can help you better predict travel time, understand your vehicle's performance, or even understand sports better, like how quickly a sprinter gains speed off the blocks!