Pregunta
upstudy study bank question image url

To prove De Moivres Therem.

Ask by Hanson Wagner. in India
Jan 27,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

De Moivre's Theorem states that for any real number \( \theta \) and any integer \( n \): \[ (\cos \theta + i \sin \theta)^n = \cos(n\theta) + i \sin(n\theta) \] **Proof:** 1. **Base Case (n = 1):** \[ (\cos \theta + i \sin \theta)^1 = \cos \theta + i \sin \theta \] This is true. 2. **Inductive Step:** Assume the theorem holds for \( n \): \[ (\cos \theta + i \sin \theta)^n = \cos(n\theta) + i \sin(n\theta) \] For \( n + 1 \): \[ (\cos \theta + i \sin \theta)^{n+1} = (\cos(n\theta) + i \sin(n\theta))(\cos \theta + i \sin \theta) \] Expanding: \[ = \cos(n\theta)\cos \theta - \sin(n\theta)\sin \theta + i(\sin(n\theta)\cos \theta + \cos(n\theta)\sin \theta) \] Using angle addition formulas: \[ = \cos((n+1)\theta) + i \sin((n+1)\theta) \] 3. **Conclusion:** By induction, De Moivre's Theorem is true for all integers \( n \). This completes the proof.

Solución

To prove De Moivre's Theorem, we start with the statement of the theorem itself: **De Moivre's Theorem** states that for any real number \( \theta \) and any integer \( n \): \[ (\cos \theta + i \sin \theta)^n = \cos(n\theta) + i \sin(n\theta) \] ### Proof: 1. **Base Case (n = 1)**: For \( n = 1 \): \[ (\cos \theta + i \sin \theta)^1 = \cos \theta + i \sin \theta \] This is trivially true. 2. **Inductive Step**: Assume the theorem holds for some integer \( n \), i.e., \[ (\cos \theta + i \sin \theta)^n = \cos(n\theta) + i \sin(n\theta) \] We need to show it holds for \( n + 1 \): \[ (\cos \theta + i \sin \theta)^{n+1} = (\cos \theta + i \sin \theta)^n (\cos \theta + i \sin \theta) \] By the inductive hypothesis, we can substitute: \[ = (\cos(n\theta) + i \sin(n\theta))(\cos \theta + i \sin \theta) \] 3. **Expanding the Right Side**: Using the distributive property (FOIL method): \[ = \cos(n\theta)\cos \theta + i \cos(n\theta)\sin \theta + i \sin(n\theta)\cos \theta - \sin(n\theta)\sin \theta \] Rearranging gives: \[ = (\cos(n\theta)\cos \theta - \sin(n\theta)\sin \theta) + i(\sin(n\theta)\cos \theta + \cos(n\theta)\sin \theta) \] 4. **Using Angle Addition Formulas**: We recognize the expressions: - The real part: \[ \cos(n\theta + \theta) = \cos(n\theta)\cos \theta - \sin(n\theta)\sin \theta \] - The imaginary part: \[ \sin(n\theta + \theta) = \sin(n\theta)\cos \theta + \cos(n\theta)\sin \theta \] 5. **Combining Results**: Thus, we have: \[ (\cos \theta + i \sin \theta)^{n+1} = \cos((n+1)\theta) + i \sin((n+1)\theta) \] 6. **Conclusion**: By the principle of mathematical induction, De Moivre's Theorem holds for all integers \( n \). This completes the proof of De Moivre's Theorem.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

De Moivre's Theorem, which relates complex numbers and trigonometry, was introduced by the French mathematician Abraham de Moivre in the early 18th century. This theorem states that for any real number \( \theta \) and integer \( n \), \( (r \text{cis} \theta)^n = r^n \text{cis}(n\theta) \), where \( r \) is the modulus and \( \theta \) is the argument of a complex number in polar form. This theorem beautifully bridges the gap between algebra and geometry by interpreting complex exponentiation in a trigonometric context. One practical application of De Moivre's Theorem is in calculating powers and roots of complex numbers, which is a crucial skill in fields ranging from electrical engineering to physics. For example, if you want to find the cube roots of unity \( (1, \omega, \omega^2) \), you can simply apply De Moivre's Theorem by setting \( r = 1 \) and splitting \( 2\pi/3 \) into three equally spaced angles. This highlights how the theorem can simplify complex calculations and reveal insights into symmetry in periodic functions!

preguntas relacionadas

Latest Pre Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad