Pregunta
Consider the sequence: \( \frac{1}{4} ; \frac{3}{16} ; \frac{5}{64} ; \frac{7}{256} ; \ldots \) 5.1 State the next two terms in the sequence. 5.2 Determine the \( n^{\text {th }} \) term of the sequence.
Ask by Mccoy Bolton. in South Africa
Jan 23,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
5.1 The next two terms are \( \frac{9}{1024} \) and \( \frac{11}{4096} \).
5.2 The \( n^{\text{th}} \) term is \( \frac{2n - 1}{4^n} \).
Solución
To analyze the given sequence \( \frac{1}{4}, \frac{3}{16}, \frac{5}{64}, \frac{7}{256}, \ldots \), we will first identify the pattern in both the numerators and the denominators.
### Step 1: Identify the Numerators
The numerators of the sequence are:
- 1 (for the first term)
- 3 (for the second term)
- 5 (for the third term)
- 7 (for the fourth term)
We can see that the numerators form an arithmetic sequence where each term increases by 2:
- The \( n^{\text{th}} \) numerator can be expressed as:
\[
2n - 1
\]
### Step 2: Identify the Denominators
The denominators of the sequence are:
- 4 (for the first term)
- 16 (for the second term)
- 64 (for the third term)
- 256 (for the fourth term)
We can observe that the denominators are powers of 4:
- \( 4 = 4^1 \)
- \( 16 = 4^2 \)
- \( 64 = 4^3 \)
- \( 256 = 4^4 \)
Thus, the \( n^{\text{th}} \) denominator can be expressed as:
\[
4^n
\]
### Step 3: Formulate the \( n^{\text{th}} \) Term
Combining the numerators and denominators, the \( n^{\text{th}} \) term of the sequence can be expressed as:
\[
a_n = \frac{2n - 1}{4^n}
\]
### Step 4: Find the Next Two Terms
Now, we can find the next two terms in the sequence by substituting \( n = 5 \) and \( n = 6 \) into the formula for \( a_n \).
1. For \( n = 5 \):
\[
a_5 = \frac{2(5) - 1}{4^5} = \frac{10 - 1}{1024} = \frac{9}{1024}
\]
2. For \( n = 6 \):
\[
a_6 = \frac{2(6) - 1}{4^6} = \frac{12 - 1}{4096} = \frac{11}{4096}
\]
### Final Answers
5.1 The next two terms in the sequence are:
- \( \frac{9}{1024} \)
- \( \frac{11}{4096} \)
5.2 The \( n^{\text{th}} \) term of the sequence is:
\[
a_n = \frac{2n - 1}{4^n}
\]
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
The Deep Dive
The next two terms in the sequence are \( \frac{9}{1024} \) and \( \frac{11}{4096} \). The pattern shows the numerators increasing by 2, starting from 1, while the denominators are powers of 4, specifically \( 4^n \). The \( n^{\text{th}} \) term of the sequence can be expressed as \( a_n = \frac{2n - 1}{4^n} \). For every term, the numerator consists of the sequence of odd numbers (1, 3, 5, 7, ...) represented by \( 2n - 1 \), while the denominator is the power of 4 corresponding to the order of the term.
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium