Pregunta
upstudy study bank question image url

Consider the sequence: \( \frac{1}{4} ; \frac{3}{16} ; \frac{5}{64} ; \frac{7}{256} ; \ldots \) 5.1 State the next two terms in the sequence. 5.2 Determine the \( n^{\text {th }} \) term of the sequence.

Ask by Mccoy Bolton. in South Africa
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

5.1 The next two terms are \( \frac{9}{1024} \) and \( \frac{11}{4096} \). 5.2 The \( n^{\text{th}} \) term is \( \frac{2n - 1}{4^n} \).

Solución

To analyze the given sequence \( \frac{1}{4}, \frac{3}{16}, \frac{5}{64}, \frac{7}{256}, \ldots \), we will first identify the pattern in both the numerators and the denominators. ### Step 1: Identify the Numerators The numerators of the sequence are: - 1 (for the first term) - 3 (for the second term) - 5 (for the third term) - 7 (for the fourth term) We can see that the numerators form an arithmetic sequence where each term increases by 2: - The \( n^{\text{th}} \) numerator can be expressed as: \[ 2n - 1 \] ### Step 2: Identify the Denominators The denominators of the sequence are: - 4 (for the first term) - 16 (for the second term) - 64 (for the third term) - 256 (for the fourth term) We can observe that the denominators are powers of 4: - \( 4 = 4^1 \) - \( 16 = 4^2 \) - \( 64 = 4^3 \) - \( 256 = 4^4 \) Thus, the \( n^{\text{th}} \) denominator can be expressed as: \[ 4^n \] ### Step 3: Formulate the \( n^{\text{th}} \) Term Combining the numerators and denominators, the \( n^{\text{th}} \) term of the sequence can be expressed as: \[ a_n = \frac{2n - 1}{4^n} \] ### Step 4: Find the Next Two Terms Now, we can find the next two terms in the sequence by substituting \( n = 5 \) and \( n = 6 \) into the formula for \( a_n \). 1. For \( n = 5 \): \[ a_5 = \frac{2(5) - 1}{4^5} = \frac{10 - 1}{1024} = \frac{9}{1024} \] 2. For \( n = 6 \): \[ a_6 = \frac{2(6) - 1}{4^6} = \frac{12 - 1}{4096} = \frac{11}{4096} \] ### Final Answers 5.1 The next two terms in the sequence are: - \( \frac{9}{1024} \) - \( \frac{11}{4096} \) 5.2 The \( n^{\text{th}} \) term of the sequence is: \[ a_n = \frac{2n - 1}{4^n} \]

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

The next two terms in the sequence are \( \frac{9}{1024} \) and \( \frac{11}{4096} \). The pattern shows the numerators increasing by 2, starting from 1, while the denominators are powers of 4, specifically \( 4^n \). The \( n^{\text{th}} \) term of the sequence can be expressed as \( a_n = \frac{2n - 1}{4^n} \). For every term, the numerator consists of the sequence of odd numbers (1, 3, 5, 7, ...) represented by \( 2n - 1 \), while the denominator is the power of 4 corresponding to the order of the term.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad