Pregunta
upstudy study bank question image url

9. Marcus works for base pay: \( \$ 25,000 \), commission: \( 2 \% \), and fees: \( \$ 3.75 \) per transaction. (A) Commission on \( \$ 50,000 \) is \( \$ 1,000 \). (B) Commission on \( \$ 35,000 \) is \( \$ 800 \). (C) Fees for 25 transactions are \( \$ 93.75 \). (D) Total earnings for \( \$ 75,000 \) in sales and 10 transactions are \( \$ 1,537.50 \). (E) Total earnings for \( \$ 75,000 \) in sales and 10 transactions are \( \$ 26,537.50 \).

Ask by Barber George. in the United States
Jan 26,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The true statements are: - (A) Commission on \$50,000 is \$1,000. - (C) Fees for 25 transactions are \$93.75. - (E) Total earnings for \$75,000 in sales and 10 transactions are \$26,537.50.

Solución

To solve the problem, we need to calculate Marcus's total earnings based on the given conditions. His total earnings consist of his base pay, commission from sales, and fees from transactions. ### Known Conditions: - Base pay: \( B = 25000 \) - Commission rate: \( r = 0.02 \) (2%) - Fees per transaction: \( f = 3.75 \) ### Calculations: 1. **Commission Calculation**: The commission \( C \) on sales \( S \) is calculated as: \[ C = r \times S \] 2. **Fees Calculation**: The total fees \( F \) for \( n \) transactions is calculated as: \[ F = f \times n \] 3. **Total Earnings Calculation**: The total earnings \( E \) can be calculated as: \[ E = B + C + F \] Now, let's evaluate each statement one by one. ### (A) Commission on \( \$ 50,000 \): - Sales \( S = 50000 \) - Calculate commission: \[ C = 0.02 \times 50000 = 1000 \] - This statement is **True**. ### (B) Commission on \( \$ 35,000 \): - Sales \( S = 35000 \) - Calculate commission: \[ C = 0.02 \times 35000 = 700 \] - This statement is **False** (the commission is \( 700 \), not \( 800 \)). ### (C) Fees for 25 transactions: - Number of transactions \( n = 25 \) - Calculate fees: \[ F = 3.75 \times 25 = 93.75 \] - This statement is **True**. ### (D) Total earnings for \( \$ 75,000 \) in sales and 10 transactions: - Sales \( S = 75000 \) - Number of transactions \( n = 10 \) - Calculate commission: \[ C = 0.02 \times 75000 = 1500 \] - Calculate fees: \[ F = 3.75 \times 10 = 37.5 \] - Calculate total earnings: \[ E = 25000 + 1500 + 37.5 = 26537.5 \] - This statement is **False** (the total earnings are \( 26537.5 \), not \( 1537.5 \)). ### (E) Total earnings for \( \$ 75,000 \) in sales and 10 transactions: - From the previous calculation, we found: \[ E = 26537.5 \] - This statement is **True**. ### Summary of Statements: - (A) True - (B) False - (C) True - (D) False - (E) True Thus, the true statements are (A), (C), and (E).

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

Let’s break down Marcus's earnings! To calculate his total earnings, we need to consider the base pay, commission on sales, and transaction fees. So for a sales amount of \( \$ 75,000 \): - The commission is \( 2\% \) of \( \$ 75,000 \), which is \( \$ 1,500 \). - The fees for 10 transactions are \( 10 \times 3.75 = \$ 37.50 \). - Thus, his total earnings would be: \[ \$ 25,000 \, (\text{base pay}) + \$ 1,500 \, (\text{commission}) + \$ 37.50 \, (\text{fees}) = \$ 26,537.50.\] So, the correct statement is (E) Total earnings for \( \$ 75,000 \) in sales and 10 transactions are \( \$ 26,537.50 \). Let’s explore a bit of history! Commissions have been a common practice since the rise of salespersons in the 19th century. The concept of incentivizing salespeople to sell more by offering a percentage of the sales they made traces back to then. It's an approach that not only motivates individuals but also drives a healthy competition among sales teams! Now onto the real-world application of commission-based pay! Many industries utilize commission structures, especially in fields like real estate, insurance, and retail. It allows companies to attract motivated individuals who are driven to increase sales and performance. Paying commission can also help balance the costs—if sales dip, the total payroll reduces accordingly. It’s a win-win!

preguntas relacionadas

Latest Arithmetic Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad