Pregunta
What is the value of \( \sqrt{760-4 x^{2}} \) to the nearest tenth when \( x=6 \) ?
Ask by Grant Lambert. in the United States
Jan 24,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
The value is approximately 24.8.
Solución
To find the value of \( \sqrt{760 - 4x^{2}} \) when \( x = 6 \):
1. **Substitute \( x = 6 \) into the expression:**
\[
\sqrt{760 - 4(6)^2} = \sqrt{760 - 4 \times 36} = \sqrt{760 - 144} = \sqrt{616}
\]
2. **Calculate \( \sqrt{616} \):**
- We know that \( 24^2 = 576 \) and \( 25^2 = 625 \). So, \( \sqrt{616} \) is between 24 and 25.
- To find a more precise value, consider:
\[
24.8^2 = (25 - 0.2)^2 = 625 - 2 \times 25 \times 0.2 + 0.04 = 615.04
\]
- Since \( 24.8^2 = 615.04 \) and we need \( \sqrt{616} \), we can use a linear approximation:
\[
\sqrt{616} \approx 24.8 + \frac{616 - 615.04}{2 \times 24.8} \approx 24.8 + \frac{0.96}{49.6} \approx 24.8 + 0.019 \approx 24.819
\]
3. **Round to the nearest tenth:**
\[
24.819 \approx 24.8
\]
**Final Answer:**
The value is approximately 24.8.
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
Mind Expander
When \( x = 6 \), we can substitute this value into the expression \( \sqrt{760 - 4x^{2}} \). First, calculate \( 4x^{2} \): \[ 4x^{2} = 4(6^{2}) = 4(36) = 144. \] Now, substitute this back into the expression: \[ 760 - 4x^{2} = 760 - 144 = 616. \] Next, we take the square root of 616: \[ \sqrt{616} \approx 24.8. \] So, the value of \( \sqrt{760 - 4x^{2}} \) when \( x = 6 \) is approximately \( 24.8 \) to the nearest tenth.
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium