Pregunta
upstudy study bank question image url

Question Meg invested \( \$ 16,000 \) in a savings account. If the interest rate is \( 6 \% \) per year, how much will be in the account in 5 years with monthly compounding? Round your answer to the nearest cent. Do NOT round until you calculate the final answer

Ask by Warner Mccarthy. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

After 5 years with monthly compounding at a 6% interest rate, Meg will have approximately \$21,581.60 in her savings account.

Solución

To calculate the amount in the savings account after 5 years with monthly compounding, we can use the formula for compound interest: \[ A = P \left(1 + \frac{r}{n}\right)^{nt} \] Where: - \( A \) is the amount of money accumulated after n years, including interest. - \( P \) is the principal amount (the initial amount of money). - \( r \) is the annual interest rate (decimal). - \( n \) is the number of times that interest is compounded per year. - \( t \) is the number of years the money is invested or borrowed. Given: - \( P = 16000 \) - \( r = 0.06 \) (6% as a decimal) - \( n = 12 \) (monthly compounding) - \( t = 5 \) Now, we can substitute these values into the formula: \[ A = 16000 \left(1 + \frac{0.06}{12}\right)^{12 \times 5} \] Let's calculate this step by step. 1. Calculate \( \frac{r}{n} \): \[ \frac{0.06}{12} = 0.005 \] 2. Calculate \( nt \): \[ 12 \times 5 = 60 \] 3. Calculate \( A \): \[ A = 16000 \left(1 + 0.005\right)^{60} \] 4. Calculate \( 1 + 0.005 \): \[ 1 + 0.005 = 1.005 \] 5. Now calculate \( (1.005)^{60} \): \[ (1.005)^{60} \] 6. Finally, multiply by \( 16000 \). Let's perform the calculations. Calculate the value by following steps: - step0: Calculate: \(16000\left(1+\frac{0.06}{12}\right)^{12\times 5}\) - step1: Divide the terms: \(16000\left(1+\frac{1}{200}\right)^{12\times 5}\) - step2: Add the numbers: \(16000\left(\frac{201}{200}\right)^{12\times 5}\) - step3: Multiply the numbers: \(16000\left(\frac{201}{200}\right)^{60}\) - step4: Simplify: \(16000\times \frac{201^{60}}{200^{60}}\) - step5: Rewrite the expression: \(200\times 80\times \frac{201^{60}}{200^{60}}\) - step6: Reduce the numbers: \(80\times \frac{201^{60}}{200^{59}}\) - step7: Rewrite the expression: \(40\times 2\times \frac{201^{60}}{200^{59}}\) - step8: Rewrite the expression: \(40\times 2\times \frac{201^{60}}{40^{59}\times 5^{59}}\) - step9: Reduce the numbers: \(2\times \frac{201^{60}}{40^{58}\times 5^{59}}\) - step10: Rewrite the expression: \(2\times \frac{201^{60}}{8^{58}\times 5^{58}\times 5^{59}}\) - step11: Rewrite the expression: \(2\times \frac{201^{60}}{2^{174}\times 5^{58}\times 5^{59}}\) - step12: Reduce the numbers: \(1\times \frac{201^{60}}{2^{173}\times 5^{58}\times 5^{59}}\) - step13: Multiply the fractions: \(\frac{201^{60}}{2^{173}\times 5^{117}}\) After performing the calculations, we find that the amount in the account after 5 years with monthly compounding is approximately: \[ A \approx 21581.602441 \] Rounding this to the nearest cent, the final amount in the account will be: \[ A \approx 21581.60 \] Thus, the total amount in the account after 5 years will be **\$21,581.60**.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

To calculate the future value of Meg's investment, we can use the formula for compound interest: \[ A = P \left(1 + \frac{r}{n}\right)^{nt} \] where: - \( A \) is the amount of money accumulated after n years, including interest. - \( P \) is the principal amount (the initial amount of money). - \( r \) is the annual interest rate (decimal). - \( n \) is the number of times that interest is compounded per unit \( t \). - \( t \) is the time the money is invested for in years. In Meg’s case: - \( P = 16000 \) - \( r = 0.06 \) - \( n = 12 \) (monthly compounding) - \( t = 5 \) Plugging in the values we get: \[ A = 16000 \left(1 + \frac{0.06}{12}\right)^{12 \times 5} \] Calculating \(\frac{0.06}{12} = 0.005\), thus: \[ A = 16000 \left(1 + 0.005\right)^{60} \] Calculating \( (1 + 0.005)^{60} \): \[ A = 16000 \left(1.005\right)^{60} \] \[ A = 16000 \times 1.34885057 \text{ (approximately)} \] \[ A \approx 21581.61 \] So, after rounding to the nearest cent, the amount in the account after 5 years will be approximately \( \$21,581.61 \).

Latest Pre Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad