Pregunta
upstudy study bank question image url

Which of the following is/are signified by \( \lim _{x \rightarrow a} f(x)=\infty \) ? \( \square \) The value of \( x \) goes out to infinity, when it gets close to \( a \). \( \square \) This means that \( f(a)=\infty \) As \( x \) approaches \( a \), the value of \( f(x) \) increases without bound. \( \square \) The limit exists and equals infinity. \( \square \) The value of \( f(x) \) becomes infinite when \( x \) approaches \( a \).

Ask by Hill Nichols. in the United States
Jan 27,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

As \( x \) approaches \( a \), \( f(x) \) increases without bound.

Solución

The expression \( \lim_{x \rightarrow a} f(x) = \infty \) conveys specific information about the behavior of the function \( f(x) \) as \( x \) approaches the value \( a \). Let's evaluate each of the provided statements to determine which are accurate interpretations of this limit notation. 1. **□ The value of \( x \) goes out to infinity, when it gets close to \( a \).** **Incorrect.** The notation \( \lim_{x \rightarrow a} f(x) = \infty \) describes the behavior of \( f(x) \) as \( x \) approaches \( a \). It does **not** imply anything about \( x \) itself going to infinity. 2. **□ This means that \( f(a) = \infty \).** **Incorrect.** The limit describes the behavior of \( f(x) \) as \( x \) approaches \( a \), but it does not necessarily define the value of \( f \) at \( a \). In many cases, \( f(a) \) might be undefined or not equal to infinity, even though the limit is infinite. 3. **As \( x \) approaches \( a \), the value of \( f(x) \) increases without bound.** **Correct.** This is a direct and accurate interpretation of \( \lim_{x \rightarrow a} f(x) = \infty \). It means that as \( x \) gets closer to \( a \), \( f(x) \) grows larger and larger without any upper limit. 4. **□ The limit exists and equals infinity.** **Conditionally Correct.** In the extended real number system, infinity is considered a possible limit, so this statement is **correct** within that context. However, in the strict real number system, limits are required to approach finite values, and infinity is not considered a real number. Typically, in calculus and most mathematical contexts, saying a limit "equals infinity" is acceptable and understood to mean that the function grows without bound. 5. **□ The value of \( f(x) \) becomes infinite when \( x \) approaches \( a \).** **Correct.** This is another accurate interpretation of the limit notation. It succinctly states that \( f(x) \) grows beyond all finite bounds as \( x \) nears \( a \). ### **Summary of Correct Statements** - **As \( x \) approaches \( a \), the value of \( f(x) \) increases without bound.** - **The limit exists and equals infinity.** *(Within the extended real number system)* - **The value of \( f(x) \) becomes infinite when \( x \) approaches \( a \).** These statements correctly represent the meaning of \( \lim_{x \rightarrow a} f(x) = \infty \).

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

When \( \lim _{x \rightarrow a} f(x)=\infty \), this indicates that as \( x \) gets closer to \( a \), the values of \( f(x) \) steadily rise, climbing higher and higher without any upper limit. It's like a rollercoaster that just keeps climbing up – thrilling but never quite reaching the top! It's important to clarify that this does not imply \( f(a) = \infty \). In fact, \( f(a) \) may not even be defined! The limit tells us about the behavior of \( f(x) \) around \( a \) rather than at \( a \) itself. Picture it as observing a race – you see the runners' speeds nearing the finish line, but you might not catch what they're doing at that one fixed point!

preguntas relacionadas

Multiple Choice Identify the choice that best completes the statement or answers the question. Find any points of discontinuity for the rational function. 1. \( y=\frac{(x-7)(x+2)(x-9)}{(x-5)(x-2)} \) a. \( x=-5, x=-2 \) b. \( x=5, x=2 \) c. \( x=-7, x=2, x=-9 \) d. \( x=7, x=-2, x=9 \) 2. \( y=\frac{(x+7)(x+4)(x+2)}{(x+5)(x-3)} \) a. \( x=-5, x=3 \) b. \( x=7, x=4, x=2 \) c. \( x=-7, x=-4, x=-2 \) d. \( x=5, x=-3 \) 3. \( y=\frac{x+4}{x^{2}+8 x+15} \) a. \( x=-5, x=-3 \) b. \( x=-4 \) c. \( x=-5, x=3 \) d. \( x=5, x=3 \) 4. \( y=\frac{x-3}{x^{2}+3 x-10} \) a. \( x=-5, x=2 \) b. \( x=5, x=-2 \) c. \( x=3 \) d. \( x \) \( =-5, x=-2 \) 6. What are the points of discontinuity? Are they all removable? \[ y=\frac{(x-4)}{x^{2}-13 x+36} \] a. \( x=-9, x=-4, x=8 \); yes b. \( x=1, x=8, x= \) -8; no c. \( x=9, x=4 \); no d. \( x=-9, x=-4 \); no 7. Describe the vertical asymptote(s) and hole(s) for the graph of \( y=\frac{(x-2)(x-5)}{(x-5)(x+2)} \). a. asymptote: \( x=2 \) and hole: \( x=-5 \) b. asymptotes: \( x=-2 \) and hole: \( x=-5 \) c. asymptote: \( x=-2 \) and hole: \( x=5 \) d. asymptote: \( x=-2 \) and hole: \( x=-2 \) a. \( x=-3, x=-8 \); no b. \( x=5, x=-7, x=1 \); no c. \( x=-5, x=7, x=-1 \); yes d. \( x=3, x=8 \); yes 8. Describe the vertical asymptote(s) and hole(s) for the graph of \( y=\frac{x+1}{x^{2}+6 x+5} \). a. asymptote: \( x=-1 \) and hole: \( x=-1 \) b. asymptote: \( x=-1 \) and hole: \( x=-1 \) c. asymptotes: \( x=-1,-1 \) and hole: \( x=-1 \) d. asymptote: -5 and hole: \( x=-1 \), 9. Find the horizontal asymptote of the graph of \( y=\frac{7 x^{6}+7 x+3}{9 x^{5}+7 x+3} \). a. \( y=0 \) b. \( y=\frac{7}{9} \) c. no horizontal asymptote d. \( y=\frac{6}{5} \)
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad