8. आकृति 6.54 में \( \triangle \mathrm{ABC} \) के अभ्यंतर में स्थित कोई बिंदु O है तथा \( \mathrm{OD} \perp \mathrm{BC}, \mathrm{OE} \perp \mathrm{AC} \) और \( \mathrm{OF} \perp \mathrm{AB} \) है। दर्शाइए कि (i) \( \mathrm{OA}^{2}+\mathrm{OB}^{2}+\mathrm{OC}^{2}-\mathrm{OD}^{2}-\mathrm{OE}^{2}-\mathrm{OF}^{2}=\mathrm{AF}^{2}+\mathrm{BD}^{2}+\mathrm{CE}^{2} \) (ii) \( \mathrm{AF}^{2}+\mathrm{BD}^{2}+\mathrm{CE}^{2}=\mathrm{AE}^{2}+\mathrm{CD}^{2}+\mathrm{BF}^{2} \)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Mind Expander
क्या आपको पता है कि त्रिकोणों के अंदर बिंदुओं से जुड़े सूत्र और उनके गुणन के पीछे एक गहरा इतिहास है? प्राचीन ग्रीस के गणितज्ञों ने त्रिकोण और उनके विशेष बिंदुओं पर विस्तृत अनुसंधान किया। विशेषकर, यूक्लिड के सिद्धांतों ने गणितीय दृष्टिकोण को एक नए स्तर पर पहुंचा दिया, जो आज भी हमारी समस्या समाधान की तकनीकों में महत्वपूर्ण भूमिका निभाता है! और बात करें वास्तविक दुनिया में इसके उपयोग की, तो त्रिकोणों के सिद्धांत और उनकी विशेषता अक्सर वास्तुकला, इंजीनियरिंग और भौगोलिक जानकारी प्रणाली (GIS) में पाई जाती हैं। उदाहरण के लिए, भवन की मजबूती का विश्लेषण करते समय, हम त्रिकोणीय संरचनाओं का उपयोग करते हैं, क्योंकि वे हमेशा स्थिरता और संतुलन बनाए रखते हैं। तो, अगली बार जब आप एक इमारत देखें, सोचें कि त्रिकोणीय सिद्धांत कितना उपयोगी है!