Pregunta
Solve. Clear fractions or decimals first. \( \frac{3}{5}+\frac{1}{4} t=\frac{2}{5} \) The solution is \( \mathrm{t}=\square \). (Type an integer or a simplified fraction.)
Ask by Bush Bush. in the United States
Jan 24,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
\( t = -\frac{4}{5} \)
Solución
To solve the equation:
\[
\frac{3}{5} + \frac{1}{4} t = \frac{2}{5}
\]
**Step 1: Isolate the term with \( t \)**
Subtract \(\frac{3}{5}\) from both sides:
\[
\frac{1}{4} t = \frac{2}{5} - \frac{3}{5}
\]
\[
\frac{1}{4} t = -\frac{1}{5}
\]
**Step 2: Solve for \( t \)**
Multiply both sides by 4 to clear the fraction:
\[
t = -\frac{1}{5} \times 4 = -\frac{4}{5}
\]
**Solution:**
\[
\boxed{-\dfrac{4}{5}}
\]
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
Mind Expander
To solve the equation \( \frac{3}{5}+\frac{1}{4} t=\frac{2}{5} \), we start by isolating \( \frac{1}{4} t \). First, let's subtract \( \frac{3}{5} \) from both sides: \[ \frac{1}{4} t = \frac{2}{5} - \frac{3}{5} \] This simplifies to: \[ \frac{1}{4} t = \frac{-1}{5} \] Next, we eliminate the fraction by multiplying both sides by 4: \[ t = 4 \cdot \frac{-1}{5} = \frac{-4}{5} \] Thus, the solution is \( \mathrm{t}=\frac{-4}{5} \).
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium