Pregunta
upstudy study bank question image url

(b) Determine the point of inflection of the curve \( y=x^{1 / 3} \).

Ask by Mckenzie Paul. in Kenya
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The curve \( y = x^{1/3} \) has an inflection point at (0, 0).

Solución

To determine the **point of inflection** for the curve \( y = x^{1/3} \), we need to analyze the concavity of the function by examining its second derivative. ### Step 1: Find the First Derivative The first derivative of \( y \) with respect to \( x \) is: \[ y' = \frac{d}{dx}\left(x^{1/3}\right) = \frac{1}{3}x^{-2/3} \] ### Step 2: Find the Second Derivative The second derivative is obtained by differentiating \( y' \): \[ y'' = \frac{d}{dx}\left(\frac{1}{3}x^{-2/3}\right) = \frac{1}{3} \cdot \left(-\frac{2}{3}\right)x^{-5/3} = -\frac{2}{9}x^{-5/3} \] \[ y'' = -\frac{2}{9} \cdot \frac{1}{x^{5/3}} = -\frac{2}{9x^{5/3}} \] ### Step 3: Determine Where the Second Derivative Changes Sign The sign of \( y'' \) depends on the value of \( x \): - **For \( x > 0 \):** \[ y'' = -\frac{2}{9x^{5/3}} < 0 \] The function is **concave down**. - **For \( x < 0 \):** Since odd exponents preserve the sign, \[ y'' = -\frac{2}{9x^{5/3}} > 0 \] The function is **concave up**. - **At \( x = 0 \):** The second derivative is undefined because \( x^{5/3} = 0 \) makes the denominator zero. ### Step 4: Identify the Inflection Point An inflection point occurs where the concavity changes, which happens at \( x = 0 \). **Coordinates of the Inflection Point:** \[ x = 0 \quad \Rightarrow \quad y = (0)^{1/3} = 0 \] So, the inflection point is at **(0, 0)**. ### Conclusion The curve \( y = x^{1/3} \) has a **point of inflection at the origin (0, 0)**. **Answer:** The curve y = x¹ᐟ³ has a single inflection point at the origin, ( 0, 0 ).

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

To find the point of inflection of the curve \( y = x^{1/3} \), we first need to calculate the second derivative. The first derivative is \( y' = \frac{1}{3} x^{-2/3} = \frac{1}{3\sqrt[3]{x^2}} \). The second derivative is \( y'' = -\frac{2}{9} x^{-5/3} \). A point of inflection occurs where the second derivative changes sign, which typically means finding points where it equals zero or is undefined. Here, \( y'' = 0 \) does not apply as it never equals zero, but it is undefined at \( x=0 \). To ensure \( x=0 \) is indeed an inflection point, we check the sign of \( y'' \) around \( 0 \). For \( x < 0 \), \( y'' > 0 \), and for \( x > 0 \), \( y'' < 0 \). Hence, the point of inflection is at \( (0,0) \). Now you have the mathematical result; let’s dive into some fun background and application of this concept! The study of inflection points goes back to the 17th century with the work of mathematicians like Isaac Barrow and Gottfried Wilhelm Leibniz, who laid the groundwork for calculus. Inflection points are critical in fields such as physics and engineering, where they can indicate changes in motion or the structure of a physical system. Identifying these points helps predict behavior in dynamic systems! In real-life scenarios, you may often encounter curves that model everything from profit margins in business to trajectories in sports. Understanding inflection points can help you optimize these models. For instance, if a company’s profit curve has an inflection point, it signifies a shift in growth strategy—like moving from a startup phase to a more mature phase. Spotting that can significantly impact decision-making!

preguntas relacionadas

Latest Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad