Pregunta
upstudy study bank question image url

\( \frac{4}{3} x+11 \geq 7 \) or \( -4 x-3 \leq-23 \) Solution Interval Notation \( \square \)

Ask by Ramos Wright. in the United States
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The solution is \( x \geq -3 \), which in interval notation is \([-3, \infty)\).

Solución

To solve the compound inequality: \[ \frac{4}{3}x + 11 \geq 7 \quad \text{or} \quad -4x - 3 \leq -23 \] we'll solve each inequality separately and then combine the solutions using interval notation. ### 1. Solving \(\frac{4}{3}x + 11 \geq 7\): \[ \frac{4}{3}x + 11 \geq 7 \] Subtract 11 from both sides: \[ \frac{4}{3}x \geq 7 - 11 \] \[ \frac{4}{3}x \geq -4 \] Multiply both sides by \(\frac{3}{4}\) to solve for \(x\): \[ x \geq -4 \times \frac{3}{4} \] \[ x \geq -3 \] ### 2. Solving \(-4x - 3 \leq -23\): \[ -4x - 3 \leq -23 \] Add 3 to both sides: \[ -4x \leq -23 + 3 \] \[ -4x \leq -20 \] Divide both sides by \(-4\) (remember to reverse the inequality sign when dividing by a negative number): \[ x \geq 5 \] ### Combining the Solutions: The solutions to the individual inequalities are: - \(x \geq -3\) - \(x \geq 5\) Since the original compound inequality uses "or," we take the union of these solutions. The interval \(x \geq -3\) already includes \(x \geq 5\), so the combined solution is: \[ x \geq -3 \] ### Interval Notation: \[ [-3, \infty) \] **Answer:** \([-3, \infty)\)

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

To solve the first inequality \( \frac{4}{3} x + 11 \geq 7 \), subtract 11 from both sides to get \( \frac{4}{3} x \geq -4 \). Multiply both sides by \( \frac{3}{4} \) to isolate \( x \), yielding \( x \geq -3 \). For the second inequality \( -4x - 3 \leq -23 \), add 3 to both sides to find \( -4x \leq -20 \). Dividing by -4 (and reversing the inequality) gives \( x \geq 5 \). So, combining both inequalities, the solution is \( x \geq -3 \) or \( x \geq 5 \). In interval notation, that’s \( (-3, \infty) \). Therefore, the interval notation for your solution is \( (-3, \infty) \). Additionally, remember that when you have "or" in inequalities, you often end up with larger intervals. Don’t let the fluffy math scare you — celebrate those number lines! Real-life problem-solving often requires evaluating inequalities to find feasible solutions, whether for budget constraints or project timelines. Just like in math, it’s about setting boundaries for success!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad