Pregunta
upstudy study bank question image url

actor completely. \[ 3 x^{2}-20 x+25 \]

Ask by Bowman Garza. in the United States
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The quadratic expression \( 3x^{2} - 20x + 25 \) factors completely to \( (3x - 5)(x - 5) \).

Solución

It looks like you want to **factor completely** the quadratic expression: \[ 3x^{2} - 20x + 25 \] Let's factor this step by step. ### Step 1: Identify the Coefficients The quadratic is in the form: \[ ax^{2} + bx + c \] Where: - \( a = 3 \) - \( b = -20 \) - \( c = 25 \) ### Step 2: Multiply \( a \) and \( c \) Multiply the coefficients of \( x^{2} \) and the constant term: \[ a \times c = 3 \times 25 = 75 \] ### Step 3: Find Two Numbers That Multiply to \( a \times c \) and Add to \( b \) We need two numbers that: - Multiply to **75** - Add up to **-20** The numbers are **-5** and **-15** because: \[ -5 \times -15 = 75 \\ -5 + (-15) = -20 \] ### Step 4: Rewrite the Middle Term Using These Numbers Rewrite the quadratic expression by splitting the middle term: \[ 3x^{2} - 5x - 15x + 25 \] ### Step 5: Factor by Grouping Group the terms into two pairs: \[ (3x^{2} - 5x) - (15x - 25) \] Factor out the greatest common factor (GCF) from each group: \[ x(3x - 5) - 5(3x - 5) \] ### Step 6: Factor Out the Common Binomial Factor Both groups contain the common factor \( (3x - 5) \): \[ (3x - 5)(x - 5) \] ### Final Factored Form \[ 3x^{2} - 20x + 25 = (3x - 5)(x - 5) \] **Therefore, the completely factored form of the quadratic expression is:** \[ (3x - 5)(x - 5) \]

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

To factor the quadratic expression \( 3x^{2} - 20x + 25 \), we look for two numbers that multiply to give \( a \cdot c = 3 \cdot 25 = 75 \) and add up to \( b = -20 \). In this case, the pairs that work are -15 and -5. Rewriting the expression, we have: \[ 3x^{2} - 15x - 5x + 25 \] Next, we group and factor by parts: \[ (3x^{2} - 15x) + (-5x + 25) = 3x(x - 5) - 5(x - 5) \] This gives us: \[ (3x - 5)(x - 5) \] The complete factorization is: \[ (3x - 5)(x - 5) \] Now we have it all ready for any further explorations! In the world of quadratic expressions, factoring not only simplifies solving equations but can also unveil different graph characteristics! Each factor can indicate the x-intercepts of a corresponding parabola. So, once you've factored it, you can easily sketch the graph for further insights, all while uncovering the beauty of mathematics. Have you ever felt lost in quadratic equations? No worries! A common mistake is failing to recognize when to apply the quadratic formula. Before resorting to that, always check if the expression can be factored easily. It saves you time and helps you develop a keener intuition for numbers! Start by looking for a common factor or testing if the expression can be easily grouped first. Happy factoring!

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad