Pregunta
upstudy study bank question image url

\( ( a ^ { x } ) ^ { \prime } \)

Ask by Murray Grant. in Greece
Jan 18,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The derivative of \( a^{x} \) with respect to \( x \) is \( a^{x} \ln(a) \).

Solución

To find the derivative of the function \( f(x) = a^{x} \) with respect to \( x \), where \( a \) is a constant, you can use the following approach: ### Using Exponential Differentiation The derivative of an exponential function with a constant base is given by: \[ \frac{d}{dx} a^{x} = a^{x} \ln(a) \] ### Explanation 1. **Understanding the Function:** - \( a^{x} \) is an exponential function where the base \( a \) is a constant, and the exponent is the variable \( x \). 2. **Applying the Derivative Rule:** - The general rule for the derivative of \( a^{x} \) is derived from the definition of the exponential function and natural logarithms. - The derivative involves multiplying the original function by the natural logarithm of the base. 3. **Final Result:** - Therefore, the derivative \( (a^{x})' \) is: \[ (a^{x})' = a^{x} \ln(a) \] ### Example If \( a = 2 \), then: \[ \frac{d}{dx} 2^{x} = 2^{x} \ln(2) \] This means that the slope of the tangent line to the curve \( y = 2^{x} \) at any point \( x \) is \( 2^{x} \ln(2) \). ### Special Case: Natural Exponential Function When the base \( a \) is Euler's number \( e \) (approximately 2.71828), the function becomes the natural exponential function: \[ f(x) = e^{x} \] Its derivative simplifies to: \[ \frac{d}{dx} e^{x} = e^{x} \] This is because \( \ln(e) = 1 \), so: \[ \frac{d}{dx} e^{x} = e^{x} \cdot 1 = e^{x} \] ### Summary - **General Derivative:** \( (a^{x})' = a^{x} \ln(a) \) - **Natural Exponential Function:** \( (e^{x})' = e^{x} \) Feel free to ask if you have any more questions related to calculus or other topics!

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

Did you know that the derivative of an exponential function can be one of the simplest yet most powerful tools in calculus? When you differentiate \( ( a ^ { x } ) \), using the chain rule, it boils down to \( a^x \ln(a) \). This reflects how changes in the exponent can significantly affect the function's growth rate! Another fun fact is how this plays out in real-world applications—think about how compound interest works. The formula for continuously compounded interest uses \( e^{rt} \) (where \( r \) is the interest rate and \( t \) is time), which is essentially a specific case of exponentials like \( a^{x} \). Understanding the derivatives can help you predict growth over time in finance, biology, and many other fields!

Latest Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad