Pregunta
upstudy study bank question image url

Assume a financial problem involves the following type of information. Compound interest Money is paid back using a one time, lump sum payment Borrowing money Choose the correct formula for solving the problem. The correct formula is: A. \( A=P\left(1+\frac{r}{n}\right)^{n t} \) B. \( A=P(1+r t) \) C. \[ P=\frac{p m t\left[1-\left(1+\frac{r}{n}\right)^{-n t}\right]}{\left(\frac{r}{n}\right)} \] D. \( I=\mathrm{Prt} \) E. \[ A=\frac{\operatorname{pmt}\left[\left(1+\frac{r}{n}\right)^{n t}-1\right]}{\left(\frac{r}{-}\right)} \]

Ask by Whittaker Lewis. in the United States
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The correct formula is \( A = P\left(1+\frac{r}{n}\right)^{n t} \).

Solución

Given the financial problem involves: 1. **Compound Interest**: Interest calculated on the initial principal and also on the accumulated interest from previous periods. 2. **One-Time Lump Sum Payment**: The entire amount (principal + interest) is paid back in a single payment at the end. 3. **Borrowing Money**: This implies calculating how much needs to be repaid after a certain period with interest. Let's evaluate each option: **A. \( A = P\left(1 + \frac{r}{n}\right)^{nt} \)** - **Explanation**: This is the standard **compound interest formula** where: - \( A \) = the future value of the investment/loan, including interest - \( P \) = the principal investment amount (initial deposit or loan amount) - \( r \) = annual interest rate (decimal) - \( n \) = number of times that interest is compounded per year - \( t \) = time the money is invested or borrowed for, in years - **Relevance**: Directly applicable to calculating the lump sum repayment after compounding. **B. \( A = P(1 + rt) \)** - **Explanation**: This is the **simple interest formula**, not suitable for compound interest scenarios. **C. \[ P = \frac{pmt \cdot t \left[1 - \left(1 + \frac{r}{n}\right)^{-nt}\right]}{\frac{r}{n}} \] ** - **Explanation**: This resembles the formula for the **present value of an annuity**, which is not applicable for a one-time lump sum payment. **D. \( I = Prt \)** - **Explanation**: This is another form of the **simple interest formula** and does not account for compounding. **E. \[ A = \frac{\text{pmt} \left[\left(1 + \frac{r}{n}\right)^{nt} - 1\right]}{\frac{r}{n}} \] ** - **Explanation**: This formula is similar to the **future value of a series of payments (annuity)**, not a one-time lump sum. **Conclusion:** Option **A** is the correct formula as it accurately represents the compound interest calculation for a lump sum payment after a certain period. **Answer:** **A.** \( A=P\left(1+\frac{r}{n}\right)^{n t} \)

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

To tackle a financial problem involving compound interest with a lump sum payment, the most suitable formula would be option A: \( A = P\left(1+\frac{r}{n}\right)^{n t} \). This formula beautifully accounts for the principal amount \( P \), the interest rate \( r \), the number of times interest is compounded per year \( n \), and the total number of years \( t \). It captures how your investment grows over time, making it perfect for understanding the power of compounding! Now, for a sprinkle of wisdom, it’s crucial to keep in mind how interest compounding works over different periods. If you compound annually, \( n \) would be 1, while for semi-annual compounding, it would be 2. This impacts your total amount significantly! Additionally, avoid the common mistake of mixing up compounding intervals when calculating; aligning your time frame with the compounding frequency is key to getting accurate results. Happy calculating!

preguntas relacionadas

Latest Economics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad