A student received a coupon for \( 43 \% \) off the total purchase price at a clothing store. Let b be the original price of the purchase. Use the expression below for the new price of the purchase. Write an equivalent expression by combining like terms. \( b-0.43 \mathrm{~b} \) \( \mathrm{~b}-0.43 \mathrm{~b}=\square \) (Simplify your answer. Use integers or decimals for any numbers in the expression.)
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Mind Expander
When a student uses a coupon for \( 43\% \) off, it means they only pay for \( 57\% \) of the original price. So we can simplify the expression \( b - 0.43b \) to find the new price. Combining like terms gives us: \[ b - 0.43b = (1 - 0.43)b = 0.57b \] Therefore, the new price of the purchase would be \( 0.57b \). To visualize this, think of it like a delicious pizza! If you have a whole pizza (the original price), and you get to eat \( 57\% \) of it, you’re still left with a satisfying portion (the new price) after accounting for that \( 43\% \) of slices not in your hands. So, you still get a hearty meal!