Pregunta
upstudy study bank question image url

Exorcifo 1.14 You may have to rearrange and group the terms. Check some of your answers by multiplying the factors. Try to find more than one way of grouping for some of the questions. Factorise. \( \begin{array}{ll}\text { a) } a^{2}-b^{2}+a-b & \text { b) } p^{2}+p-q^{2}-q \\ \text { c) } 4 x^{2}+2 x-9 y^{2}+3 y & \text { d) } 5 a^{2} b^{2}-4 b^{4}+25 a^{4} b^{4}-2 b^{2} \\ \text { e) } 3 a^{2}-2 b-3 b^{2}+2 a & \text { f) } x^{3}-4 x y^{2}+x y-2 y^{2}\end{array} \)

Ask by Dunn Mcguire. in South Africa
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

Here are the factorizations for each expression: a) \( a^{2} - b^{2} + a - b = (a + b + 1)(a - b) \) b) \( p^{2} + p - q^{2} - q = (p + q + 1)(p - q) \) c) \( 4x^{2} + 2x - 9y^{2} + 3y = (2x + 3y)(2x - 3y + 1) \) d) \( 5a^{2}b^{2} - 4b^{4} + 25a^{4}b^{4} - 2b^{2} = b^{2}(5a^{2}b^{2} + 2b^{2} + 1)(5a^{2} - 2) \) e) \( 3a^{2} - 2b - 3b^{2} + 2a = (3a + 3b + 2)(a - b) \) f) \( x^{3} - 4xy^{2} + xy - 2y^{2} = (x^{2} + 2xy + y)(x - 2y) \) These factorizations can be verified by multiplying the factors back together to ensure they match the original expressions.

Solución

Factor the expression by following steps: - step0: Factor: \(a^{2}-b^{2}+a-b\) - step1: Rewrite the expression: \(a^{2}-ab+ba-b^{2}+a-b\) - step2: Factor the expression: \(a\left(a-b\right)+b\left(a-b\right)+a-b\) - step3: Factor the expression: \(\left(a+b+1\right)\left(a-b\right)\) Factor the expression \( 4 x^{2}+2 x-9 y^{2}+3 y \). Factor the expression by following steps: - step0: Factor: \(4x^{2}+2x-9y^{2}+3y\) - step1: Rewrite the expression: \(4x^{2}-6xy+2x+6yx-9y^{2}+3y\) - step2: Factor the expression: \(2x\left(2x-3y+1\right)+3y\left(2x-3y+1\right)\) - step3: Factor the expression: \(\left(2x+3y\right)\left(2x-3y+1\right)\) Factor the expression \( 3 a^{2}-2 b-3 b^{2}+2 a \). Factor the expression by following steps: - step0: Factor: \(3a^{2}-2b-3b^{2}+2a\) - step1: Rewrite the expression: \(3a^{2}-3ab+3ba-3b^{2}+2a-2b\) - step2: Factor the expression: \(3a\left(a-b\right)+3b\left(a-b\right)+2\left(a-b\right)\) - step3: Factor the expression: \(\left(3a+3b+2\right)\left(a-b\right)\) Factor the expression \( x^{3}-4 x y^{2}+x y-2 y^{2 \). Factor the expression by following steps: - step0: Factor: \(x^{3}-4xy^{2}+xy-2y^{2}\) - step1: Rewrite the expression: \(x^{3}-2x^{2}y+2x^{2}y-4xy^{2}+yx-2y^{2}\) - step2: Factor the expression: \(x^{2}\left(x-2y\right)+2xy\left(x-2y\right)+y\left(x-2y\right)\) - step3: Factor the expression: \(\left(x^{2}+2xy+y\right)\left(x-2y\right)\) Factor the expression \( p^{2}+p-q^{2}-q \). Factor the expression by following steps: - step0: Factor: \(p^{2}+p-q^{2}-q\) - step1: Rewrite the expression: \(p^{2}-pq+qp-q^{2}+p-q\) - step2: Factor the expression: \(p\left(p-q\right)+q\left(p-q\right)+p-q\) - step3: Factor the expression: \(\left(p+q+1\right)\left(p-q\right)\) Factor the expression \( 5 a^{2} b^{2}-4 b^{4}+25 a^{4} b^{4}-2 b^{2 \). Factor the expression by following steps: - step0: Factor: \(5a^{2}b^{2}-4b^{4}+25a^{4}b^{4}-2b^{2}\) - step1: Evaluate: \(25b^{4}a^{4}-4b^{4}+5b^{2}a^{2}-2b^{2}\) - step2: Factor the expression: \(b^{2}\left(25a^{4}b^{2}-4b^{2}+5a^{2}-2\right)\) - step3: Factor the expression: \(b^{2}\left(5a^{2}b^{2}+2b^{2}+1\right)\left(5a^{2}-2\right)\) Here are the factorizations for each of the expressions provided: ### a) \( a^{2}-b^{2}+a-b \) To factor this expression, we can rearrange and group the terms: \[ a^{2} + a - b^{2} - b = (a + b + 1)(a - b) \] **Factorization:** \((a + b + 1)(a - b)\) ### b) \( p^{2}+p-q^{2}-q \) Rearranging and grouping gives us: \[ p^{2} + p - q^{2} - q = (p + q + 1)(p - q) \] **Factorization:** \((p + q + 1)(p - q)\) ### c) \( 4x^{2}+2x-9y^{2}+3y \) Rearranging and grouping the terms: \[ 4x^{2} + 2x - 9y^{2} + 3y = (2x + 3y)(2x - 3y + 1) \] **Factorization:** \((2x + 3y)(2x - 3y + 1)\) ### d) \( 5a^{2}b^{2}-4b^{4}+25a^{4}b^{4}-2b^{2} \) This expression can be factored as: \[ 5a^{2}b^{2} - 4b^{4} + 25a^{4}b^{4} - 2b^{2} = b^{2}(5a^{2}b^{2} + 2b^{2} + 1)(5a^{2} - 2) \] **Factorization:** \(b^{2}(5a^{2}b^{2} + 2b^{2} + 1)(5a^{2} - 2)\) ### e) \( 3a^{2}-2b-3b^{2}+2a \) Rearranging and grouping gives: \[ 3a^{2} + 2a - 3b^{2} - 2b = (3a + 3b + 2)(a - b) \] **Factorization:** \((3a + 3b + 2)(a - b)\) ### f) \( x^{3}-4xy^{2}+xy-2y^{2} \) Rearranging and grouping gives: \[ x^{3} + xy - 4xy^{2} - 2y^{2} = (x^{2} + 2xy + y)(x - 2y) \] **Factorization:** \((x^{2} + 2xy + y)(x - 2y)\) These factorizations can be verified by multiplying the factors back together to ensure they yield the original expressions.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

Let’s dive into the fun world of factorization! For part (a): \(a^2 - b^2 + a - b\) can be rearranged to \((a^2 + a) - (b^2 + b)\) which factors to \(a(a + 1) - b(b + 1)\). It can also be expressed as \((a - b)(a + b + 1)\) through grouping. For part (b): \(p^2 + p - q^2 - q\) can be nicely grouped as \((p^2 - q^2) + (p - q)\). By factoring, \(p^2 - q^2\) gives \((p - q)(p + q)\) and thus overall it's \((p - q)(p + q + 1)\). Keep those factorization skills sharp!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad