Pregunta
upstudy study bank question image url

Question 1 of 10 How would you describe the difference between the graphs of \( f(x)=2 x^{2} \) and \( g(x)=-2 x^{2} \) ? A. \( g(x) \) is a reflection of \( f(x) \) over the \( y \)-axis. B. \( g(x) \) is a reflection of \( f(x) \) over the line \( y=-1 \). C. \( g(x) \) is a reflection of \( f(x) \) over the x-axis. D. \( g(x) \) is a reflection of \( f(x) \) over the line \( y=x \).

Ask by Wood Ball. in the United States
Nov 07,2024

Solución de tutoría real

Respuesta verificada por el tutor

Responder

C. \( g(x) \) is a reflection of \( f(x) \) over the x-axis.

Solución

To analyze the functions \( f(x) = 2x^2 \) and \( g(x) = -2x^2 \), we can observe their characteristics: 1. The function \( f(x) = 2x^2 \) is a parabola that opens upwards, with its vertex at the origin (0,0). 2. The function \( g(x) = -2x^2 \) is a parabola that opens downwards, also with its vertex at the origin (0,0). The key difference between these two functions is that \( g(x) \) has a negative coefficient, which means it is a reflection of \( f(x) \) across the x-axis. Thus, the correct answer is: C. \( g(x) \) is a reflection of \( f(x) \) over the x-axis.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

The graphs of \( f(x) = 2x^2 \) and \( g(x) = -2x^2 \) offer a fantastic illustration of symmetry! The function \( f(x) \) opens upwards, resembling a smiling face, while \( g(x) \) flips it upside down, creating a frown. They are equal in width but opposite in direction, showing how a negative sign transforms the shape instantly. When you take a closer look at their equations, you can find that \( g(x) \) is indeed just a reflection of \( f(x) \) over the x-axis. This realization reveals the beauty of quadratic functions and how transformations can alter their appearances, giving you another reason to love the world of graphs!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad