3. Question 3 [6 marks] Let \( f \) be a function with McLaurin series converging to \( f(x) \) for all real numbers \( x \). \( \operatorname{If} f(0)=f^{\prime}(0)=2 \) and \( f^{(n)}(0)=3 \) for \( n \geq 2 \), show \( f(x)=3 e^{x}-x-1 \).
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
The Deep Dive
To find the function \( f(x) \) given the properties of its Maclaurin series, we start by recalling that the general form of the Maclaurin series for a function \( f(x) \) is: \[ f(x) = f(0) + f'(0) x + \frac{f''(0)}{2!} x^2 + \frac{f'''(0)}{3!} x^3 + \cdots \] Given the conditions in the problem: 1. \( f(0) = 2 \) 2. \( f'(0) = 2 \) 3. \( f^{(n)}(0) = 3 \) for \( n \geq 2 \). We can now substitute these values into the Maclaurin series: \[ f(x) = 2 + 2x + \frac{3}{2!} x^2 + \frac{3}{3!} x^3 + \frac{3}{4!} x^4 + \cdots \] This can be rewritten as: \[ f(x) = 2 + 2x + \sum_{n=2}^{\infty} \frac{3}{n!} x^n \] The sum \(\sum_{n=2}^{\infty} \frac{3}{n!} x^n\) can be simplified. We can factor out a 3: \[ \sum_{n=2}^{\infty} \frac{3}{n!} x^n = 3 \sum_{n=2}^{\infty} \frac{x^n}{n!} \] The series \(\sum_{n=0}^{\infty} \frac{x^n}{n!} = e^x\), thus we can write: \[ \sum_{n=2}^{\infty} \frac{x^n}{n!} = e^x - \frac{x^0}{0!} - \frac{x^1}{1!} = e^x - 1 - x \] Putting it all together, we have: \[ \sum_{n=2}^{\infty} \frac{3}{n!} x^n = 3(e^x - 1 - x) \] Now substituting this back into the expression for \( f(x) \): \[ f(x) = 2 + 2x + 3(e^x - 1 - x) \] Simplifying this further: \[ f(x) = 2 + 2x + 3e^x - 3 - 3x \] Combining like terms: \[ f(x) = 3e^x - (3x - 2x) - 1 = 3e^x - x - 1 \] Thus, we have shown that \[ f(x) = 3e^x - x - 1 \] This completes the proof.