Pregunta
19. \( (4 a)^{2}= \) \( \qquad \) 20. \( \left(\frac{10 x^{5}}{5 x^{3}}\right)^{2}= \)
Ask by Johnston Black. in Thailand
Jan 22,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
1. \( (4a)^2 = 16a^2 \)
2. \( \left(\frac{10x^5}{5x^3}\right)^2 = 4x^4 \)
Solución
Calculate or simplify the expression \( (4a)^2 \).
Simplify the expression by following steps:
- step0: Solution:
\(\left(4a\right)^{2}\)
- step1: Use the properties of exponents:
\(4^{2}a^{2}\)
- step2: Evaluate the power:
\(16a^{2}\)
Calculate or simplify the expression \( \left(\frac{10x^5}{5x^3}\right)^2 \).
Simplify the expression by following steps:
- step0: Solution:
\(\left(\frac{10x^{5}}{5x^{3}}\right)^{2}\)
- step1: Divide the terms:
\(\left(2x^{2}\right)^{2}\)
- step2: Use the properties of exponents:
\(2^{2}\left(x^{2}\right)^{2}\)
- step3: Evaluate the power:
\(4x^{4}\)
The solutions to the given expressions are:
1. \( (4a)^2 = 16a^2 \)
2. \( \left(\frac{10x^5}{5x^3}\right)^2 = 4x^4 \)
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
Bonus Knowledge
To solve \( (4 a)^{2} \), simply square the coefficient and the variable separately: \( (4^{2})(a^{2}) = 16 a^{2} \). Voila! The answer is \( 16 a^{2} \). Now, for \( \left(\frac{10 x^{5}}{5 x^{3}}\right)^{2} \), first simplify the fraction: \( \frac{10}{5} = 2 \) and \( x^{5}/x^{3} = x^{2} \). Thus, we have \( (2 x^{2})^{2} \), which equals \( 4 x^{4} \). So, the answer is \( 4 x^{4} \)!
preguntas relacionadas
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium