1. (5 points, List Answers) Use Euler's Method with step size \( \Delta t=0.1 \) to approximate \( y(0.1), y(0.2), y(0.3), \ldots, y(1) \) for the function \( y(t) \) satisfying the following initial value problem: \[ \frac{d y}{d t}=10(t+y), \quad y(0)=0.1 \] Please give exact answers for each of these ten values.
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Bonus Knowledge
Let's apply Euler's method to approximate \( y(0.1), y(0.2), y(0.3), \ldots, y(1) \) using the given initial value problem. 1. **Step 0 (Initial Condition)**: \[ t_0 = 0, \quad y(0) = 0.1 \] 2. **Next steps (using Euler's method)**: We use the formula: \[ y_{n+1} = y_n + \Delta t \cdot f(t_n, y_n) \] where \( f(t, y) = 10(t + y) \). - **Calculating each step**: For \( n = 0 \) (at \( t = 0 \)): \[ f(0, 0.1) = 10(0 + 0.1) = 1 \] \[ y(0.1) = 0.1 + 0.1 \cdot 1 = 0.1 + 0.1 = 0.2 \] For \( n = 1 \) (at \( t = 0.1 \)): \[ f(0.1, 0.2) = 10(0.1 + 0.2) = 3 \] \[ y(0.2) = 0.2 + 0.1 \cdot 3 = 0.2 + 0.3 = 0.5 \] For \( n = 2 \) (at \( t = 0.2 \)): \[ f(0.2, 0.5) = 10(0.2 + 0.5) = 7 \] \[ y(0.3) = 0.5 + 0.1 \cdot 7 = 0.5 + 0.7 = 1.2 \] For \( n = 3 \) (at \( t = 0.3 \)): \[ f(0.3, 1.2) = 10(0.3 + 1.2) = 15 \] \[ y(0.4) = 1.2 + 0.1 \cdot 15 = 1.2 + 1.5 = 2.7 \] For \( n = 4 \) (at \( t = 0.4 \)): \[ f(0.4, 2.7) = 10(0.4 + 2.7) = 31 \] \[ y(0.5) = 2.7 + 0.1 \cdot 31 = 2.7 + 3.1 = 5.8 \] For \( n = 5 \) (at \( t = 0.5 \)): \[ f(0.5, 5.8) = 10(0.5 + 5.8) = 66 \] \[ y(0.6) = 5.8 + 0.1 \cdot 66 = 5.8 + 6.6 = 12.4 \] For \( n = 6 \) (at \( t = 0.6 \)): \[ f(0.6, 12.4) = 10(0.6 + 12.4) = 126 \] \[ y(0.7) = 12.4 + 0.1 \cdot 126 = 12.4 + 12.6 = 25.0 \] For \( n = 7 \) (at \( t = 0.7 \)): \[ f(0.7, 25.0) = 10(0.7 + 25.0) = 257 \] \[ y(0.8) = 25.0 + 0.1 \cdot 257 = 25.0 + 25.7 = 50.7 \] For \( n = 8 \) (at \( t = 0.8 \)): \[ f(0.8, 50.7) = 10(0.8 + 50.7) = 517 \] \[