Pregunta
\( \leftarrow \begin{array}{l}\text { Simplify. } \\ 3^{-4} \cdot 3^{6} \\ 3^{-4} \cdot 3^{6}=\square\end{array} \)
Ask by Tucker Chandler. in the United States
Jan 23,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
\( 3^{-4} \cdot 3^{6} = 9 \)
Solución
To simplify the expression \( 3^{-4} \cdot 3^{6} \), you can use the **laws of exponents**, specifically the **Product of Powers** rule. Here's a step-by-step breakdown:
1. **Identify the Rule:**
When multiplying two exponents with the same base, you add the exponents.
\[
a^m \cdot a^n = a^{m+n}
\]
2. **Apply the Rule to the Given Expression:**
\[
3^{-4} \cdot 3^{6} = 3^{-4 + 6}
\]
3. **Perform the Addition in the Exponent:**
\[
-4 + 6 = 2
\]
So,
\[
3^{-4} \cdot 3^{6} = 3^{2}
\]
4. **Simplify the Final Expression:**
\[
3^{2} = 9
\]
Therefore,
\[
3^{-4} \cdot 3^{6} = 9
\]
**Answer:** \( 3^{-4} \cdot 3^{6} = 9 \)
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
The Deep Dive
To simplify \( 3^{-4} \cdot 3^{6} \), you can apply the rule of exponents that states \( a^m \cdot a^n = a^{m+n} \). Here, you would add the exponents: \[ -4 + 6 = 2 \] So, \( 3^{-4} \cdot 3^{6} = 3^{2} \). Thus, the simplified expression is: \[ 3^{-4} \cdot 3^{6} = 3^{2} = 9 \] Remember, using exponent rules can make simplifying expressions much easier and faster!
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium