Pregunta
upstudy study bank question image url

A square is plotted on a coordinate plane. Henry claims that any transformation on the square will preserve the Which of the following transformations could be used to show that Henry's claim is incorrect? Select all that app translation of 5 units to the right \( \square \) ditition by a factor of 2 through the origin by a factor of \( \frac{1}{3} \) \( \square \) a reflection over the \( x \)-axis \( 45^{\circ} \) clochwise about the square's center

Ask by Cox Carrillo. in the United States
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

None of the listed transformations show that Henry's claim is incorrect because all preserve the square's shape and size.

Solución

To determine which transformations could show that Henry's claim is incorrect, we need to analyze each transformation in terms of whether it preserves the properties of the square, such as shape, size, and orientation. 1. **Translation of 5 units to the right**: - A translation moves every point of the square the same distance in a specified direction. This transformation preserves the shape and size of the square. - **Conclusion**: This transformation does not show that Henry's claim is incorrect. 2. **Dilation by a factor of 2 through the origin**: - Dilation changes the size of the square while keeping the shape the same. A factor of 2 means the square will become larger, but it will still be a square. - **Conclusion**: This transformation does not show that Henry's claim is incorrect. 3. **Dilation by a factor of \( \frac{1}{3} \)**: - Similar to the previous dilation, this transformation reduces the size of the square but maintains its shape. - **Conclusion**: This transformation does not show that Henry's claim is incorrect. 4. **Reflection over the \( x \)-axis**: - A reflection flips the square over the \( x \)-axis, which preserves the shape and size but changes the orientation. - **Conclusion**: This transformation does not show that Henry's claim is incorrect. 5. **Rotation \( 45^{\circ} \) clockwise about the square's center**: - A rotation changes the orientation of the square but preserves its shape and size. - **Conclusion**: This transformation does not show that Henry's claim is incorrect. Based on the analysis, none of the transformations listed would show that Henry's claim is incorrect, as all of them preserve the properties of the square. If the goal is to show that a transformation can change the properties of the square, we would need a transformation that alters the shape or size, such as a non-uniform scaling or a shear transformation. However, none of the provided options fit that criterion.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

To challenge Henry's claim, you could use the transformation of dilation by a factor of 2. This transformation will enlarge the square, making its dimensions change while keeping the shape similar. Therefore, it does not preserve the original size but maintains the square's overall shape. Another effective transformation is reflecting the square over the \( x \)-axis. This will alter the orientation of the square, thus demonstrating that although the shape remains a square, its position and symmetry related to the original square are affected, disproving Henry's assertion about all transformations preserving the square's properties.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad