Pregunta
upstudy study bank question image url

QUESTION 4 Round off the following numbers to the decimal places indicated: 4.1.1 4,3768534 ( 4 decimal places \( ) \) 4.1.2 \( \sqrt{7,24357}(1 \) decimal place \( ) \) Given: \( p=\sqrt{b^{2}+4 \mathrm{ac}} \) 4.2.1 Determine the value of \( p \) if \( a=2 \); \( b=6 \); \( c=2 \) (Leave your answer in the simplest surd form) 4.2.2 State whether \( p \) is rational or irrational. 4.2.3 Between which TWO consecutive integers does \( p \) lie? Write the following recurring decimals in fraction form: 4.3.1 \( \begin{array}{l}\text { 4.3 } \\ \text { 4. }\end{array} \)

Ask by Sandoval Ortiz. in South Africa
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

**Simplified Answers for QUESTION 4:** 1. **4.1.1** Rounded to 4 decimal places: **4.3769** 2. **4.1.2** Rounded to 1 decimal place: **2.7** 3. **4.2.1** \( p = 2\sqrt{13} \) 4. **4.2.2** \( p \) is **Irrational** 5. **4.2.3** \( p \) lies between **7** and **8** 6. **4.3.1** Example: \( 0.\overline{6} = \frac{2}{3} \) (Please provide specific decimals for complete solutions.)

Solución

Certainly! Let's address each part of **QUESTION 4** step by step. --- ### **4.1.1 Rounding 4.3768534 to 4 Decimal Places** **Number:** 4.3768534 **Decimal Places to Round:** 4 **Steps:** 1. Identify the fourth decimal place: **4.3768**. 2. Look at the fifth decimal place to decide whether to round up or stay: The fifth digit is **5**. 3. Since the fifth digit is **5** or more, round up the fourth decimal place by 1. **Rounded Number:** **4.3769** --- ### **4.1.2 Rounding √7.24357 to 1 Decimal Place** **Expression:** √7.24357 **Decimal Places to Round:** 1 **Steps:** 1. Calculate the square root of 7.24357. - √7 ≈ 2.6458 - √7.24357 ≈ **2.692** (approximate value). 2. Round to 1 decimal place: - The first decimal place is **6**. - The second decimal place is **9** (since it's ≥5, round up). **Rounded Value:** **2.7** --- ### **4.2.1 Determining the Value of \( p = \sqrt{b^2 + 4ac} \) with \( a = 2 \), \( b = 6 \), \( c = 2 \)** **Given:** \( a = 2 \) \( b = 6 \) \( c = 2 \) **Calculation:** \[ p = \sqrt{b^2 + 4ac} = \sqrt{6^2 + 4 \times 2 \times 2} = \sqrt{36 + 16} = \sqrt{52} \] Simplify \( \sqrt{52} \): \[ \sqrt{52} = \sqrt{4 \times 13} = 2\sqrt{13} \] **Value of \( p \):** \( p = 2\sqrt{13} \) --- ### **4.2.2 Determining Whether \( p \) is Rational or Irrational** **Expression:** \( p = 2\sqrt{13} \) **Analysis:** - \( \sqrt{13} \) is an **irrational** number because 13 is not a perfect square. - Multiplying an irrational number by a rational number (2) still results in an **irrational** number. **Conclusion:** \( p \) is **Irrational**. --- ### **4.2.3 Identifying the Two Consecutive Integers Between Which \( p \) Lies** **Expression:** \( p = 2\sqrt{13} \) **Steps:** 1. Approximate \( \sqrt{13} \): - \( \sqrt{9} = 3 \) - \( \sqrt{16} = 4 \) - So, \( \sqrt{13} \) is between **3** and **4**. - More precisely, \( \sqrt{13} \approx 3.6055 \). 2. Calculate \( p \): \[ p = 2 \times 3.6055 \approx 7.211 \] 3. Identify the consecutive integers: - **7** and **8**. **Conclusion:** \( p \) lies between **7** and **8**. --- ### **4.3.1 Writing Recurring Decimals in Fraction Form** *It appears there might be some formatting issues with the recurring decimals you intended to provide in part 4.3.1. However, I can demonstrate how to convert a recurring decimal to a fraction using an example.* **Example:** Convert \( 0.\overline{6} \) to a fraction. **Steps:** 1. Let \( x = 0.\overline{6} \). 2. Multiply both sides by 10 to shift the decimal point: \[ 10x = 6.\overline{6} \] 3. Subtract the original equation from this new equation: \[ 10x - x = 6.\overline{6} - 0.\overline{6} \] \[ 9x = 6 \] 4. Solve for \( x \): \[ x = \frac{6}{9} = \frac{2}{3} \] **Conclusion:** \( 0.\overline{6} = \frac{2}{3} \) *If you provide the specific recurring decimals for parts 4.3.1 and 4.3.2, I can offer precise conversions.* --- Feel free to provide the specific recurring decimals for **4.3.1** and **4.3.2**, and I'll be happy to assist further!

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

4.1.1 When rounding 4,3768534 to four decimal places, you look at the fifth decimal place (5). Since it's greater than 5, you round up the fourth decimal place from 6 to 7, giving you 4.3769. Simple as that! 4.1.2 For \( \sqrt{7.24357} \), rounded to one decimal place, you first calculate the square root, which is approximately 2.687. Looking at the digit in the tenths place (6), since it's over 5, you round the number up to 2.7. Voila! 4.2.1 Plugging into the formula \( p = \sqrt{b^{2} + 4ac} \): = \( \sqrt{6^{2} + 4(2)(2)} \) = \( \sqrt{36 + 16} = \sqrt{52} = 2\sqrt{13} \). 4.2.2 Since \( \sqrt{13} \) cannot be expressed as a fraction, \( p = 2\sqrt{13} \) is irrational. 4.2.3 To find the range for \( p \), we estimate \( \sqrt{13} \) is about 3.6. So, \( 2\sqrt{13} \approx 7.2 \). This lies between the integers 7 and 8. 4.3.1 Now, for converting recurring decimals to fractions, the prime example is 0.333... This can be elegantly expressed as \( \frac{1}{3} \).

Latest Arithmetic Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad