Responder
**Simplified Answers for QUESTION 4:**
1. **4.1.1**
Rounded to 4 decimal places: **4.3769**
2. **4.1.2**
Rounded to 1 decimal place: **2.7**
3. **4.2.1**
\( p = 2\sqrt{13} \)
4. **4.2.2**
\( p \) is **Irrational**
5. **4.2.3**
\( p \) lies between **7** and **8**
6. **4.3.1**
Example: \( 0.\overline{6} = \frac{2}{3} \)
(Please provide specific decimals for complete solutions.)
Solución
Certainly! Let's address each part of **QUESTION 4** step by step.
---
### **4.1.1 Rounding 4.3768534 to 4 Decimal Places**
**Number:** 4.3768534
**Decimal Places to Round:** 4
**Steps:**
1. Identify the fourth decimal place: **4.3768**.
2. Look at the fifth decimal place to decide whether to round up or stay: The fifth digit is **5**.
3. Since the fifth digit is **5** or more, round up the fourth decimal place by 1.
**Rounded Number:**
**4.3769**
---
### **4.1.2 Rounding √7.24357 to 1 Decimal Place**
**Expression:** √7.24357
**Decimal Places to Round:** 1
**Steps:**
1. Calculate the square root of 7.24357.
- √7 ≈ 2.6458
- √7.24357 ≈ **2.692** (approximate value).
2. Round to 1 decimal place:
- The first decimal place is **6**.
- The second decimal place is **9** (since it's ≥5, round up).
**Rounded Value:**
**2.7**
---
### **4.2.1 Determining the Value of \( p = \sqrt{b^2 + 4ac} \) with \( a = 2 \), \( b = 6 \), \( c = 2 \)**
**Given:**
\( a = 2 \)
\( b = 6 \)
\( c = 2 \)
**Calculation:**
\[
p = \sqrt{b^2 + 4ac} = \sqrt{6^2 + 4 \times 2 \times 2} = \sqrt{36 + 16} = \sqrt{52}
\]
Simplify \( \sqrt{52} \):
\[
\sqrt{52} = \sqrt{4 \times 13} = 2\sqrt{13}
\]
**Value of \( p \):**
\( p = 2\sqrt{13} \)
---
### **4.2.2 Determining Whether \( p \) is Rational or Irrational**
**Expression:**
\( p = 2\sqrt{13} \)
**Analysis:**
- \( \sqrt{13} \) is an **irrational** number because 13 is not a perfect square.
- Multiplying an irrational number by a rational number (2) still results in an **irrational** number.
**Conclusion:**
\( p \) is **Irrational**.
---
### **4.2.3 Identifying the Two Consecutive Integers Between Which \( p \) Lies**
**Expression:**
\( p = 2\sqrt{13} \)
**Steps:**
1. Approximate \( \sqrt{13} \):
- \( \sqrt{9} = 3 \)
- \( \sqrt{16} = 4 \)
- So, \( \sqrt{13} \) is between **3** and **4**.
- More precisely, \( \sqrt{13} \approx 3.6055 \).
2. Calculate \( p \):
\[
p = 2 \times 3.6055 \approx 7.211
\]
3. Identify the consecutive integers:
- **7** and **8**.
**Conclusion:**
\( p \) lies between **7** and **8**.
---
### **4.3.1 Writing Recurring Decimals in Fraction Form**
*It appears there might be some formatting issues with the recurring decimals you intended to provide in part 4.3.1. However, I can demonstrate how to convert a recurring decimal to a fraction using an example.*
**Example:** Convert \( 0.\overline{6} \) to a fraction.
**Steps:**
1. Let \( x = 0.\overline{6} \).
2. Multiply both sides by 10 to shift the decimal point:
\[
10x = 6.\overline{6}
\]
3. Subtract the original equation from this new equation:
\[
10x - x = 6.\overline{6} - 0.\overline{6}
\]
\[
9x = 6
\]
4. Solve for \( x \):
\[
x = \frac{6}{9} = \frac{2}{3}
\]
**Conclusion:**
\( 0.\overline{6} = \frac{2}{3} \)
*If you provide the specific recurring decimals for parts 4.3.1 and 4.3.2, I can offer precise conversions.*
---
Feel free to provide the specific recurring decimals for **4.3.1** and **4.3.2**, and I'll be happy to assist further!
Revisado y aprobado por el equipo de tutoría de UpStudy
Explicar
Simplifique esta solución