11. \( 100^{5 x+2}=\left(\frac{1}{10}\right)^{11-x} \)
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Beyond the Answer
To solve the equation \( 100^{5x+2}=\left(\frac{1}{10}\right)^{11-x} \), let's express both sides with base 10. We know \( 100 = 10^2 \), so the left-hand side becomes: \[ (10^2)^{5x+2} = 10^{2(5x+2)} = 10^{10x + 4}. \] For the right-hand side, \( \frac{1}{10} = 10^{-1} \), so we have: \[ \left(10^{-1}\right)^{11-x} = 10^{-(11-x)} = 10^{x - 11}. \] Now we can set the exponents equal to one another since the bases are the same: \[ 10x + 4 = x - 11. \] Subtract \( x \) from both sides: \[ 9x + 4 = -11. \] Now subtract 4 from both sides: \[ 9x = -15. \] Finally, divide by 9: \[ x = -\frac{15}{9} = -\frac{5}{3}. \] So the solution to the equation is \[ x = -\frac{5}{3}. \]