Example What is the solution of the system of equations? \[ \begin{array}{l} -5 x+2 y=22 \\ 10 x+2 y=-8 \end{array} \] \[ 2(-5 x+2 y=22) \rightarrow \begin{array}{rlrl} -10 x+4 y & =44 & 10 x+2 y & =-8 \\ +10 x+2 y & =-8 \\ \hline 6 y & =36 & 10 x+2(6) & =-8 \\ y & =6 & 10 x+12 & =-8 \\ & 10 x & =-20 \\ x & =-2 \end{array} \] The solution is \( (-2,6) \). (1) Show a different way to use elimination to solve the system of equations in the Example.
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Beyond the Answer
Let’s switch it up a bit and tackle the problem with a fresh approach! Start with the two equations: \[ -5x + 2y = 22 \quad (1) \] \[ 10x + 2y = -8 \quad (2) \] To eliminate \(y\), let's subtract equation (1) from equation (2): \[ (10x + 2y) - (-5x + 2y) = -8 - 22 \] This simplifies to: \[ 15x = -30 \] Dividing both sides by 15 gives us: \[ x = -2 \] Now plug \(x = -2\) back into either equation to solve for \(y\). Using (1): \[ -5(-2) + 2y = 22 \implies 10 + 2y = 22 \implies 2y = 12 \implies y = 6 \] So again, we find the solution is \( (-2, 6) \)! Remember, there are often multiple methods to arrive at the same solution—feel free to mix and match techniques, like substitution or graphing, to keep things interesting!