Pregunta
upstudy study bank question image url

Siven arithmetic series \( 18+24+30+\cdots+300 \) (a) Determine the number of terms in the series. (b) Calculate the sum of this series. (c) Calculate the sum of all the whole numbers up to and including 300 that GAUTENG PROVINCE tixamenss © Gauteng Department of Education Page 6 of are not divisible by six. (4) QUESTION 9

Ask by Craig Sandoval. in South Africa
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

(a) There are 48 terms in the series. (b) The sum of the series is 7,632. (c) The sum of all whole numbers up to and including 300 that are not divisible by six is 37,500.

Solución

¡Inicia sesión para desbloquear respuestas gratis!

Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

star-icon Descubrir

Revisado y aprobado por el equipo de tutoría de UpStudy

Mind Expander

To tackle the arithmetic series \( 18 + 24 + 30 + \cdots + 300 \), we first observe that this series has a common difference of \( 6 \). The first term \( a = 18 \) and the last term \( l = 300 \). (a) To find the number of terms \( n \), we use the formula for the \( n \)-th term of an arithmetic series: \[ l = a + (n - 1)d \] Substituting the known values: \[ 300 = 18 + (n - 1) \cdot 6 \] Solving for \( n \): \[ 300 - 18 = (n - 1) \cdot 6 \\ 282 = (n - 1) \cdot 6 \\ n - 1 = 47 \\ n = 48 \] Thus, there are \( 48 \) terms in the series. (b) To calculate the sum \( S_n \) of the series, we use the formula: \[ S_n = \frac{n}{2} (a + l) \] Substituting the values we've found: \[ S_{48} = \frac{48}{2} (18 + 300) \\ = 24 \cdot 318 \\ = 7632 \] Therefore, the sum of the series is \( 7632 \). (c) Now to calculate the sum of all whole numbers up to \( 300 \) that are not divisible by \( 6 \). First, we find the sum of numbers divisible by \( 6 \): The numbers divisible by \( 6 \) up to \( 300 \) form another arithmetic series: \( 6, 12, 18, \ldots, 300 \) with a common difference of \( 6 \) too. The last term \( 300 = 6n \) implies \( n = 50 \). Therefore, there are \( 50 \) terms. The sum of this series is: \[ S_{50} = \frac{50}{2} (6 + 300) = 25 \cdot 306 = 7650 \] Next, the total sum of numbers from \( 1 \) to \( 300 \) is: \[ \text{Total Sum} = \frac{300}{2}(1 + 300) = 150 \cdot 301 = 45150 \] To find the sum of numbers not divisible by \( 6 \): \[ \text{Sum Not Divisible by 6} = \text{Total Sum} - S_{50} = 45150 - 7650 = 37500 \] Thus, the sum of all whole numbers up to and including \( 300 \) that are not divisible by \( 6 \) is \( 37500 \).

preguntas relacionadas

Latest Arithmetic Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad