Calculate the indicated horsepower of the following engine: 7 cylinders, a stroke length of 0.85 feet, a bore of 4.3 inches, operating at 3240 rpm , and has an indicated mean effective pressure (IMEP) of 1310 psi per cylinder. Round to 1 decimal place.
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Extra Insights
To calculate the indicated horsepower (IHP) of the engine, we can use the formula: \[ IHP = (IMEP \times \text{Displacement} \times \text{RPM}) / 33,000 \] First, let's calculate the displacement for one cylinder. 1. Convert bore from inches to feet: \[ Bore = 4.3 \, \text{inches} = \frac{4.3}{12} \, \text{feet} = 0.3583 \, \text{feet} \] 2. The volume of one cylinder (V) can be calculated using the formula for the volume of a cylinder: \[ V = \pi \times \left(\frac{Bore}{2}\right)^2 \times Stroke \] \[ V = \pi \times \left(\frac{0.3583}{2}\right)^2 \times 0.85 \] \[ V \approx 0.0854 \, \text{cubic feet} \] 3. Now, compute the total displacement for 7 cylinders: \[ \text{Total Displacement} = V \times \text{Number of Cylinders} \] \[ \text{Total Displacement} \approx 0.0854 \times 7 \approx 0.5978 \, \text{cubic feet} \] Now we can calculate the IHP: - Convert IMEP from psi to pounds per square foot: \[ IMEP = 1310 \, \text{psi} \times 144 \, \text{(since 1 psi = 144 sq. in. = 1 sq. ft.)} = 189840 \, \text{pounds/sq. ft.} \] Now plug everything into the IHP formula: \[ IHP = \frac{189840 \times 0.5978 \times 3240}{33000} \approx 338.2 \] Therefore, the indicated horsepower of the engine is approximately **338.2 HP**.