Pregunta
upstudy study bank question image url

3 What are all the roots of \( x^{3}-3 x^{2}-x+3=0 \) Whaice 1 point

Ask by Osborne Nunez. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The roots of the equation \( x^{3} - 3x^{2} - x + 3 = 0 \) are \( x = 1 \), \( x = 3 \), and \( x = -1 \).

Solución

To find all the roots of the equation \( x^{3} - 3x^{2} - x + 3 = 0 \), follow these steps: 1. **Rational Root Theorem:** Possible rational roots are \( \pm1, \pm3 \). 2. **Testing Roots:** - **\( x = 1 \):** \[ 1^3 - 3(1)^2 - 1 + 3 = 1 - 3 - 1 + 3 = 0 \] So, \( x = 1 \) is a root. 3. **Factor the Polynomial:** - Divide the polynomial by \( (x - 1) \): \[ x^3 - 3x^2 - x + 3 = (x - 1)(x^2 - 2x - 3) \] 4. **Solve the Quadratic Equation:** - \( x^2 - 2x - 3 = 0 \) - Factoring: \[ (x - 3)(x + 1) = 0 \] So, \( x = 3 \) and \( x = -1 \). **All roots of the equation are \( x = 1 \), \( x = 3 \), and \( x = -1 \).**

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

To find the roots of the polynomial \( x^{3}-3 x^{2}-x+3=0 \), we can use the Rational Root Theorem to test possible rational roots. By substituting \( x = 1 \), we find that \( 1 \) is indeed a root. Factoring \( x-1 \) out of the polynomial, we can perform polynomial long division and find the remaining quadratic \( x^{2}-2x-3 \). We can further factor this as \( (x-3)(x+1) \). Therefore, the complete set of roots is \( x = 1, 3, -1 \). Roots of polynomials can paint a picture of various phenomena in the real world; for instance, they can represent equilibrium points in economics, such as supply and demand equilibrium, or predict behavior in engineering systems, like the stability of structures. Understanding polynomial behavior at these roots helps in optimizing solutions in various applications. If you're solving polynomials like a pro, remember that the sign changes in synthetic division can lead to common mistakes, such as miscalculating remainders or not recognizing a factor. Always double-check your synthetic division steps, factor confirmations, and use the discriminant to find out if the quadratic can be easily solved!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad