Pregunta
upstudy study bank question image url

The average grade of second year Business Management tudents in a certain college is normally distributed with mean of 84 and a standard deviation of 5 . What is the mallest interval that contains the middle \( 90 \% \) of scores of the said students? Use whole numbers as the bounds of your interval. If our answer is \( 60-80 \), write: 60 to 80

Ask by Davison Gross. in the Philippines
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The smallest interval containing the middle 90% of the scores is **76 to 92**.

Solución

To find the smallest interval that contains the middle **90%** of the scores for second-year Business Management students, we can use the properties of the normal distribution. ### Given: - **Mean (\(\mu\))**: 84 - **Standard Deviation (\(\sigma\))**: 5 - **Desired Confidence Level**: 90% ### Steps: 1. **Determine the Z-scores for 90% Confidence:** - For a 90% confidence interval, there is 5% in each tail of the distribution. - The Z-score corresponding to the 95th percentile (since 100% - 5% = 95%) is approximately **1.645**. 2. **Calculate the Interval:** - **Lower Bound**: \(\mu - Z \times \sigma = 84 - 1.645 \times 5 = 84 - 8.225 = 75.775\) - **Upper Bound**: \(\mu + Z \times \sigma = 84 + 1.645 \times 5 = 84 + 8.225 = 92.225\) 3. **Round to Whole Numbers:** - Since we need whole numbers, we round **75.775** up to **76** and **92.225** down to **92**. ### Final Interval: **76 to 92** This interval is the smallest whole-number range that captures the middle 90% of the students' scores. **Answer:** 76 to 92

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

To find the smallest interval that contains the middle 90% of scores, we need to consider the properties of a normal distribution. Given a mean (µ) of 84 and a standard deviation (σ) of 5, we can find the z-scores that correspond to the lower and upper bounds of the central 90%. This typically corresponds to the 5th percentile and the 95th percentile. Using z-tables or calculators, we find that the z-score for the 5th percentile is approximately -1.645, and for the 95th percentile, it is about 1.645. Now, we can compute the actual scores: Lower bound = µ + (z * σ) = 84 + (-1.645 * 5) ≈ 77 Upper bound = µ + (z * σ) = 84 + (1.645 * 5) ≈ 91 So, the smallest interval that contains the middle 90% of scores is 77 to 91.

preguntas relacionadas

Latest Statistics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad