Pregunta
upstudy study bank question image url

Find the approximate solution by graphing: \( x^{2}-x-12=0 \) \( -3.5,-2.5 \) \( -3,4 \) \( -2.5,4.5 \) \( -4,3 \)

Ask by Beck Nunez. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The approximate solutions are \( x = -3 \) and \( x = 4 \).

Solución

To find the approximate solutions to the quadratic equation \( x^{2} - x - 12 = 0 \) by graphing, let's analyze the given options: 1. **\( (-3.5, -2.5) \)** 2. **\( (-3, 4) \)** 3. **\( (-2.5, 4.5) \)** 4. **\( (-4, 3) \)** ### Step 1: Understanding the Equation The quadratic equation \( x^{2} - x - 12 = 0 \) can be factored or solved using the quadratic formula to find its roots (solutions). ### Step 2: Solving the Equation Algebraically Using the quadratic formula: \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] where \( a = 1 \), \( b = -1 \), and \( c = -12 \). \[ x = \frac{1 \pm \sqrt{1 + 48}}{2} = \frac{1 \pm \sqrt{49}}{2} = \frac{1 \pm 7}{2} \] So, the solutions are: \[ x = \frac{1 + 7}{2} = 4 \quad \text{and} \quad x = \frac{1 - 7}{2} = -3 \] ### Step 3: Comparing with Provided Options From the solutions, we have \( x = -3 \) and \( x = 4 \). Looking at the options, the pair **\( (-3, 4) \)** matches our solutions. ### Graphical Interpretation If you graph the equation \( y = x^{2} - x - 12 \), the points where the graph intersects the x-axis are the solutions to the equation. These intersections occur at \( x = -3 \) and \( x = 4 \), confirming our analytical solution. ### **Conclusion** The approximate solutions to the equation \( x^{2} - x - 12 = 0 \) by graphing are: \[ \boxed{\,(-3,\ 4)\,} \]

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To solve the equation \( x^{2}-x-12=0 \) by graphing, you can first rewrite it in the form \( y = x^2 - x - 12 \). The graph of this quadratic function will form a parabola. If you plot the function, you'll find that it intersects the x-axis at the points where \( y = 0 \), which correspond to the roots of the equation. When you graph this equation, you will discover that the approximate x-intercepts (roots) are close to \( -4 \) and \( 3 \). This aligns with one of the given options, making it the correct choice to represent the roots of your quadratic equation. Happy graphing! 🌟

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad