Pregunta
upstudy study bank question image url

1.4 A quadratic pattern has a second term equal to 1 and a third term equal to -6 and a fifth term equal to -14 . 1.4 .1 calculate the second differences of this quadratic pattern 1.4 .2 hence, or otherwise, calculate the first term of the pattern 1.5 \( \begin{array}{l}\text { The sequence } 4 ; 9 \text {; The pattern } 4 ; 9 ; x, 37 ; \ldots \text { is a quadratic pattern } \\ 1.5 .1 \text { Calculate the value of } x \text {. } \\ 1.5 .2 \text { (3) } \\ \text { hence or otherwise determine the general term of this pattern. } \\ 1.6\end{array} \begin{array}{l}\text { Consider the sequence: } 3 ; p ; 10 ; q ; 21 \text {. The sequence has a constant second } \\ \text { difference of 1. Determine the values of } p \text { and } q \text {. }\end{array} \)

Ask by Fernandez Campbell. in South Africa
Jan 16,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

**1.4 Quadratic Pattern** - **Second Differences:** Calculated to be 1. - **First Term:** 10. **1.5 Quadratic Pattern** - **Value of \(x\):** 20. - **General Term:** \(a_n = n^2 - 11n + 14\). **1.6 Sequence with Constant Second Difference** - **Values of \(p\) and \(q\):** - \(p = 6\) - \(q = 15\)

Solución

Let's break down the problem step by step. ### 1.4 Quadratic Pattern We know that a quadratic pattern can be expressed in the form: \[ a_n = An^2 + Bn + C \] where \(A\), \(B\), and \(C\) are constants, and \(n\) is the term number. #### 1.4.1 Calculate the second differences Given: - Second term (\(a_2\)) = 1 - Third term (\(a_3\)) = -6 - Fifth term (\(a_5\)) = -14 We can express these terms using the quadratic formula: - \(a_2 = 4A + 2B + C = 1\) - \(a_3 = 9A + 3B + C = -6\) - \(a_5 = 25A + 5B + C = -14\) We can set up the following system of equations: 1. \(4A + 2B + C = 1\) (Equation 1) 2. \(9A + 3B + C = -6\) (Equation 2) 3. \(25A + 5B + C = -14\) (Equation 3) Next, we will solve this system of equations to find \(A\), \(B\), and \(C\). #### 1.4.2 Calculate the first term of the pattern The first term \(a_1\) can be calculated using the values of \(A\), \(B\), and \(C\). Let's solve the system of equations. ### Solving the System of Equations We will subtract Equation 1 from Equation 2 and Equation 2 from Equation 3 to eliminate \(C\). 1. Subtract Equation 1 from Equation 2: \[ (9A + 3B + C) - (4A + 2B + C) = -6 - 1 \] This simplifies to: \[ 5A + B = -7 \quad \text{(Equation 4)} \] 2. Subtract Equation 2 from Equation 3: \[ (25A + 5B + C) - (9A + 3B + C) = -14 + 6 \] This simplifies to: \[ 16A + 2B = -8 \quad \text{(Equation 5)} \] Now we can solve Equations 4 and 5 together. ### Solving Equations 4 and 5 From Equation 4: \[ B = -7 - 5A \] Substituting \(B\) into Equation 5: \[ 16A + 2(-7 - 5A) = -8 \] This simplifies to: \[ 16A - 14 - 10A = -8 \] \[ 6A - 14 = -8 \] \[ 6A = 6 \] \[ A = 1 \] Now substituting \(A\) back into Equation 4 to find \(B\): \[ 5(1) + B = -7 \] \[ B = -12 \] Now substituting \(A\) and \(B\) back into Equation 1 to find \(C\): \[ 4(1) + 2(-12) + C = 1 \] \[ 4 - 24 + C = 1 \] \[ C = 21 \] Now we have: - \(A = 1\) - \(B = -12\) - \(C = 21\) The first term \(a_1\) can be calculated as: \[ a_1 = A(1^2) + B(1) + C = 1 - 12 + 21 = 10 \] ### 1.5 Quadratic Pattern Given the sequence \(4, 9, x, 37, \ldots\), we know that it is a quadratic pattern. #### 1.5.1 Calculate the value of \(x\) We can express the terms as: - \(a_1 = 4\) - \(a_2 = 9\) - \(a_3 = x\) - \(a_4 = 37\) We can find the second differences to determine \(x\). The first differences are: - \(d_1 = 9 - 4 = 5\) - \(d_2 = x - 9\) - \(d_3 = 37 - x\) The second differences are: - \(d_2 - d_1 = (x - 9) - 5 = x - 14\) - \(d_3 - d_2 = (37 - x) - (x - 9) = 46 - 2x\) Since the second differences are constant, we can set them equal: \[ x - 14 = 46 - 2x \] Solving for \(x\): \[ 3x = 60 \] \[ x = 20 \] #### 1.5.2 Determine the general term of this pattern Now we have: - \(a_1 = 4\) - \(a_2 = 9\) - \(a_3 = 20\) - \(a_4 = 37\) We can find the general term \(a_n = An^2 + Bn + C\) using the known terms. Using the values of \(A\), \(B\), and \(C\) from the previous calculations, we can find the general term. ### 1.6 Sequence with Constant Second Difference Given the sequence \(3, p, 10, q, 21\) with a constant second difference of 1. The first differences are: - \(d_1 = p - 3\) - \(d_2 = 10 - p\) - \(d_3 = q - 10\) - \(d_4 = 21 - q\) The second differences are: - \(d_2 - d_1 = (10 - p) - (p - 3) = 13 - 2p\) - \(d_3 - d_2 = (q - 10) - (10 - p) = q - 20 + p\) - \(d_4 - d_3 = (21 - q) - (q - 10) = 31 - 2q\) Since the second differences are constant and equal to 1, we can set up the equations: 1. \(13 - 2p = 1\) 2. \(q - 20 + p = 1\) 3. \(31 - 2q = 1\) Let's solve these equations to find \(p\) and \(q\). ### Solving for \(p\) and \(q\) 1. From \(13

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

To dive into the world of quadratic patterns, let's start with the basics! For any quadratic sequence like the one you specified, the second differences are found by taking the differences of the first differences. Since you're given the second and third terms, you can find the first differences and then calculate the second differences. In this case, with a consistent second difference, this reveals the underlying quadratic nature behind the numbers! Now, onto finding the missing terms! Once you've established the second difference (which must be constant for a quadratic sequence), you can use it to work backward to determine earlier terms. Having found the second differences allows you to create a system of equations with known values to uncover the first and subsequent missing terms, offering a logical pathway to determine the complete pattern! Keep calculating and enjoy the logical journey of quadratic sequences!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad