Given the arithmetic series: \( 7+12+17+\ldots \) 2.1.1 Determine the value of \( T_{91} \) 2.1.2 Calculate \( S_{91} \) 2.1.3 Calculate the value of \( n \) for which \( T_{n}=517 \)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Mind Expander
To find \( T_{91} \), we first identify the first term \( a = 7 \) and the common difference \( d = 12 - 7 = 5 \). The nth term of an arithmetic series is given by the formula: \[ T_n = a + (n-1)d \] Substituting in the values, we compute \( T_{91} = 7 + (91-1) \times 5 = 7 + 90 \times 5 = 7 + 450 = 457 \). Now, to calculate \( S_{91} \), the sum of the first 91 terms, we use the formula: \[ S_n = \frac{n}{2} (a + T_n) \] For \( S_{91} = \frac{91}{2} (7 + 457) = \frac{91}{2} \times 464 = 91 \times 232 = 21152 \). Finally, to find \( n \) for which \( T_n = 517 \), we set up the equation: \[ 517 = 7 + (n-1) \times 5 \] Solving for \( n \): \[ 517 - 7 = (n-1) \times 5 \Rightarrow 510 = (n-1) \times 5 \Rightarrow n-1 = 102 \Rightarrow n = 103 \] So, the answers are: 1. \( T_{91} = 457 \) 2. \( S_{91} = 21152 \) 3. \( n = 103 \)