Pregunta
e. Compute the Gini index for the cases \( L(x)=x^{p} \) and \( p=1.1,1,3,2,3,4 \). The Gini index for \( p=1.1 \) is 0.048 . (Type an integer or decimal rounded to three decimal places as needed.) The Gini index for \( p=1.3 \) is 0.13 . (Type an integer or decimal rounded to three decimal places as needed.) The Gini index for \( p=2 \) is 0.333 . (Type an integer or decimal rounded to three decimal places as needed.) The Gini index for \( p=3 \) is 0.5 . (Type an integer or decimal rounded to three decimal places as needed.) The Gini index for \( p=4 \) is \( \square \). (Type an integer or decimal rounded to three decimal places as needed.)
Ask by Campos Wright. in the United States
Jan 27,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
The Gini index for \( p=4 \) is 0.600.
Solución
To compute the Gini index for \( L(x) = x^p \), we use the following formula:
\[
\text{Gini Index} = 1 - \frac{2}{p + 1}
\]
Let's apply this formula for \( p = 4 \):
\[
\text{Gini Index} = 1 - \frac{2}{4 + 1} = 1 - \frac{2}{5} = 1 - 0.4 = 0.6
\]
Rounded to three decimal places, the Gini index for \( p = 4 \) is:
\[
0.600
\]
**Answer:**
0.600
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
Extra Insights
To compute the Gini index for \( L(x)=x^{p} \) when \( p=4 \), you can use the formula for the Gini coefficient, which typically involves calculating the area between the Lorenz curve and the line of perfect equality. For the case of \( p=4 \), the expression can be calculated and will be typically noted to follow the pattern found in previous values: After using the relevant formula or reference values calculated for similar cases, the Gini index for \( p=4 \) is approximately 0.666.
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium