Find the solution of the system of equations. \[ \begin{aligned}-10 x-y & =27 \\ -4 x-y & =9\end{aligned} \]
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Bonus Knowledge
To solve the system of equations, we can use the method of elimination or substitution. Let's use elimination in this case. We have the following equations: 1) \(-10x - y = 27\) 2) \(-4x - y = 9\) First, we'll eliminate \(y\) by subtracting the second equation from the first: \[ (-10x - y) - (-4x - y) = 27 - 9 \] This simplifies to: \[ -10x + 4x = 18 \implies -6x = 18 \] Now, solve for \(x\): \[ x = \frac{18}{-6} = -3 \] Next, substitute \(x = -3\) into one of the original equations to find \(y\). We'll use the second equation: \[ -4(-3) - y = 9 \] This simplifies to: \[ 12 - y = 9 \implies -y = 9 - 12 \implies -y = -3 \implies y = 3 \] Thus, the solution to the system of equations is: \[ (x, y) = (-3, 3) \]