Pregunta
upstudy study bank question image url

Solve the system of linear equations. \[ \left\{\begin{array}{rr}x+2 y-7 z= & -4 \\ 2 x+3 y+z= & 5 \\ 3 x+7 y-36 z= & -25\end{array}\right. \]

Ask by Bowman Graham. in the United States
Jan 22,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The system of equations has infinitely many solutions.

Solución

Solve the system of equations \( x+2y-7z=-4;2x+3y+z=5;3x+7y-36z=-25 \). Solve the system of equations by following steps: - step0: Solve using the substitution method: \(\left\{ \begin{array}{l}x+2y-7z=-4\\2x+3y+z=5\\3x+7y-36z=-25\end{array}\right.\) - step1: Solve the equation: \(\left\{ \begin{array}{l}x=-4-2y+7z\\2x+3y+z=5\\3x+7y-36z=-25\end{array}\right.\) - step2: Substitute the value of \(x:\) \(\left\{ \begin{array}{l}2\left(-4-2y+7z\right)+3y+z=5\\3\left(-4-2y+7z\right)+7y-36z=-25\end{array}\right.\) - step3: Simplify: \(\left\{ \begin{array}{l}-8-y+15z=5\\-12+y-15z=-25\end{array}\right.\) - step4: Solve the equation: \(\left\{ \begin{array}{l}y=-13+15z\\-12+y-15z=-25\end{array}\right.\) - step5: Substitute the value of \(y:\) \(-12-13+15z-15z=-25\) - step6: Simplify: \(-25=-25\) - step7: Substitute the value of \(y:\) \(x=-4-2\left(-13+15z\right)+7z\) - step8: Simplify: \(x=22-23z\) - step9: Calculate: \(\left(x,y,z\right) = \left(22-23z,-13+15z,z\right),z \in \mathbb{R}\) - step10: Alternative Form: \(\textrm{Infinitely many solutions}\) The system of linear equations has infinitely many solutions.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To solve the given system of linear equations, we can use the method of substitution or elimination. Here's how to approach it step by step: We have the system: 1. \( x + 2y - 7z = -4 \) (Equation 1) 2. \( 2x + 3y + z = 5 \) (Equation 2) 3. \( 3x + 7y - 36z = -25 \) (Equation 3) Let's solve this system. First, let's express \( x \) from Equation 1: \[ x = -4 - 2y + 7z \quad (4) \] Now substitute Equation (4) into Equations 2 and 3: Substituting into Equation 2: \[ 2(-4 - 2y + 7z) + 3y + z = 5 \] \[ -8 - 4y + 14z + 3y + z = 5 \] \[ -8 - y + 15z = 5 \] \[ -y + 15z = 13 \quad (5) \] Now substitute Equation (4) into Equation 3: \[ 3(-4 - 2y + 7z) + 7y - 36z = -25 \] \[ -12 - 6y + 21z + 7y - 36z = -25 \] \[ -12 + y - 15z = -25 \] \[ y - 15z = -13 \quad (6) \] Now we have the new system of equations (5) and (6): 1. \(-y + 15z = 13\) (Equation 5) 2. \(y - 15z = -13\) (Equation 6) Adding Equations (5) and (6): \[ (-y + 15z) + (y - 15z) = 13 - 13 \] \[ 0 = 0 \] This shows that the two equations are dependent, confirming they represent the same line. Therefore, we can solve for \( y \) in terms of \( z \). From Equation (5): \[ y = 15z + 13 \quad (7) \] Now substituting Equation (7) back into Equation (4): \[ x = -4 - 2(15z + 13) + 7z \] \[ x = -4 - 30z - 26 + 7z \] \[ x = -30 - 23z \] Now we can express the solution as parametric equations in terms of \( z \): \[ x = -30 - 23z, \quad y = 15z + 13, \quad z = z \] Thus, the general solution is: \[ \boxed{(x, y, z) = (-30 - 23t, 15t + 13, t) \text{ for any } t \in \mathbb{R}} \]

preguntas relacionadas

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad