Pregunta
Find the degree of the polynomial. SUBMIT ANSWER Enter an exact number. Sr............... \( r^{4} s^{4}-3 r^{4} s^{5} \)
Ask by Davison Park. in the United States
Jan 24,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
The degree of the polynomial is 9.
Solución
The polynomial given is \( r^{4} s^{4} - 3 r^{4} s^{5} \).
To determine the degree of the polynomial, we look at each term and calculate the sum of the exponents of all variables in that term:
1. **First term:** \( r^4 s^4 \)
- Degree = 4 (from \( r^4 \)) + 4 (from \( s^4 \)) = **8**
2. **Second term:** \( -3 r^4 s^5 \)
- Degree = 4 (from \( r^4 \)) + 5 (from \( s^5 \)) = **9**
The degree of the polynomial is the highest degree among its terms, which is **9**.
**Answer:**
9
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
Extra Insights
The degree of the polynomial is determined by the highest sum of the exponents in each term. In the given polynomial \( r^{4} s^{4} - 3 r^{4} s^{5} \), the first term \( r^{4} s^{4} \) has a degree of \( 4 + 4 = 8 \), and the second term \( -3 r^{4} s^{5} \) has a degree of \( 4 + 5 = 9 \). Therefore, the degree of the polynomial is 9.
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium